legged_gym-master.zip
大小:14.87MB
价格:42积分
下载量:0
评分:
5.0
上传者:m0_58400126
更新日期:2025-09-22

legged-gym包

资源文件列表(大概)

文件名
大小
legged_gym-master/
-
legged_gym-master/.gitattributes
148B
legged_gym-master/.github/
-
legged_gym-master/.github/ISSUE_TEMPLATE/
-
legged_gym-master/.github/ISSUE_TEMPLATE/bug_report.md
654B
legged_gym-master/.gitignore
690B
legged_gym-master/LICENSE
1.69KB
legged_gym-master/README.md
7.08KB
legged_gym-master/legged_gym/
-
legged_gym-master/legged_gym/__init__.py
1.79KB
legged_gym-master/legged_gym/envs/
-
legged_gym-master/legged_gym/envs/__init__.py
2.71KB
legged_gym-master/legged_gym/envs/a1/
-
legged_gym-master/legged_gym/envs/a1/a1_config.py
3.62KB
legged_gym-master/legged_gym/envs/anymal_b/
-
legged_gym-master/legged_gym/envs/anymal_b/anymal_b_config.py
2.2KB
legged_gym-master/legged_gym/envs/anymal_c/
-
legged_gym-master/legged_gym/envs/anymal_c/anymal.py
4.05KB
legged_gym-master/legged_gym/envs/anymal_c/flat/
-
legged_gym-master/legged_gym/envs/anymal_c/flat/anymal_c_flat_config.py
3.17KB
legged_gym-master/legged_gym/envs/anymal_c/mixed_terrains/
-
legged_gym-master/legged_gym/envs/anymal_c/mixed_terrains/anymal_c_rough_config.py
3.8KB
legged_gym-master/legged_gym/envs/base/
-
legged_gym-master/legged_gym/envs/base/base_config.py
2.56KB
legged_gym-master/legged_gym/envs/base/base_task.py
5.99KB
legged_gym-master/legged_gym/envs/base/legged_robot.py
47.26KB
legged_gym-master/legged_gym/envs/base/legged_robot_config.py
9.82KB
legged_gym-master/legged_gym/envs/cassie/
-
legged_gym-master/legged_gym/envs/cassie/cassie.py
2.05KB
legged_gym-master/legged_gym/envs/cassie/cassie_config.py
4.6KB
legged_gym-master/legged_gym/scripts/
-
legged_gym-master/legged_gym/scripts/play.py
5.57KB
legged_gym-master/legged_gym/scripts/train.py
2.14KB
legged_gym-master/legged_gym/tests/
-
legged_gym-master/legged_gym/tests/test_env.py
2.38KB
legged_gym-master/legged_gym/utils/
-
legged_gym-master/legged_gym/utils/__init__.py
1.85KB
legged_gym-master/legged_gym/utils/helpers.py
8.86KB
legged_gym-master/legged_gym/utils/logger.py
5.89KB
legged_gym-master/legged_gym/utils/math.py
2.36KB
legged_gym-master/legged_gym/utils/task_registry.py
7.46KB
legged_gym-master/legged_gym/utils/terrain.py
9.09KB
legged_gym-master/licenses/
-
legged_gym-master/licenses/assets/
-
legged_gym-master/licenses/assets/ANYmal_b_license.txt
1.42KB
legged_gym-master/licenses/assets/ANYmal_c_license.txt
1.44KB
legged_gym-master/licenses/assets/a1_license.txt
16.33KB
legged_gym-master/licenses/assets/cassie_license.txt
1.06KB
legged_gym-master/licenses/dependencies/
-
legged_gym-master/licenses/dependencies/matplotlib_license.txt
2.31KB
legged_gym-master/resources/
-
legged_gym-master/resources/actuator_nets/
-
legged_gym-master/resources/actuator_nets/anydrive_v3_lstm.pt
16.26KB
legged_gym-master/resources/robots/
-
legged_gym-master/resources/robots/a1/
-
legged_gym-master/resources/robots/a1/a1_license.txt
16.33KB
legged_gym-master/resources/robots/a1/meshes/
-
legged_gym-master/resources/robots/a1/meshes/calf.dae
1.68MB
legged_gym-master/resources/robots/a1/meshes/hip.dae
653.32KB
legged_gym-master/resources/robots/a1/meshes/thigh.dae
1.1MB
legged_gym-master/resources/robots/a1/meshes/thigh_mirror.dae
1.13MB
legged_gym-master/resources/robots/a1/meshes/trunk.dae
4.05MB
legged_gym-master/resources/robots/a1/meshes/trunk_A1.png
70.15KB
legged_gym-master/resources/robots/a1/urdf/
-
legged_gym-master/resources/robots/a1/urdf/a1.urdf
17.83KB
legged_gym-master/resources/robots/anymal_b/
-
legged_gym-master/resources/robots/anymal_b/ANYmal_b_license.txt
1.42KB
legged_gym-master/resources/robots/anymal_b/meshes/
-
legged_gym-master/resources/robots/anymal_b/meshes/anymal_base.dae
8.81MB
legged_gym-master/resources/robots/anymal_b/meshes/anymal_foot.dae
460.54KB
legged_gym-master/resources/robots/anymal_b/meshes/anymal_hip_l.dae
2.37MB
legged_gym-master/resources/robots/anymal_b/meshes/anymal_hip_r.dae
2.37MB
legged_gym-master/resources/robots/anymal_b/meshes/anymal_shank_l.dae
565.5KB
legged_gym-master/resources/robots/anymal_b/meshes/anymal_shank_r.dae
564.31KB
legged_gym-master/resources/robots/anymal_b/meshes/anymal_thigh_l.dae
2.56MB
legged_gym-master/resources/robots/anymal_b/meshes/anymal_thigh_r.dae
2.59MB
legged_gym-master/resources/robots/anymal_b/meshes/base_uv_texture.jpg
648.08KB
legged_gym-master/resources/robots/anymal_b/meshes/carbon_uv_texture.jpg
164.64KB
legged_gym-master/resources/robots/anymal_b/urdf/
-
legged_gym-master/resources/robots/anymal_b/urdf/anymal_b.urdf
23.81KB
legged_gym-master/resources/robots/anymal_c/
-
legged_gym-master/resources/robots/anymal_c/ANYmal_c_license.txt
1.44KB
legged_gym-master/resources/robots/anymal_c/meshes/
-
legged_gym-master/resources/robots/anymal_c/meshes/base.dae
272.28KB
legged_gym-master/resources/robots/anymal_c/meshes/base.jpg
193.8KB
legged_gym-master/resources/robots/anymal_c/meshes/battery.dae
5.21KB
legged_gym-master/resources/robots/anymal_c/meshes/battery.jpg
110.88KB
legged_gym-master/resources/robots/anymal_c/meshes/bottom_shell.dae
1.38MB
legged_gym-master/resources/robots/anymal_c/meshes/bottom_shell.jpg
165.25KB
legged_gym-master/resources/robots/anymal_c/meshes/depth_camera.dae
5.3KB
legged_gym-master/resources/robots/anymal_c/meshes/depth_camera.jpg
185.66KB
legged_gym-master/resources/robots/anymal_c/meshes/drive.dae
27.23KB
legged_gym-master/resources/robots/anymal_c/meshes/drive.jpg
173.85KB
legged_gym-master/resources/robots/anymal_c/meshes/face.dae
812.01KB
legged_gym-master/resources/robots/anymal_c/meshes/face.jpg
294.88KB
legged_gym-master/resources/robots/anymal_c/meshes/foot.dae
115.34KB
legged_gym-master/resources/robots/anymal_c/meshes/foot.jpg
185.21KB
legged_gym-master/resources/robots/anymal_c/meshes/handle.dae
22.14KB
legged_gym-master/resources/robots/anymal_c/meshes/handle.jpg
166.52KB
legged_gym-master/resources/robots/anymal_c/meshes/hatch.dae
9.43KB
legged_gym-master/resources/robots/anymal_c/meshes/hatch.jpg
102.86KB
legged_gym-master/resources/robots/anymal_c/meshes/hip.jpg
226.57KB
legged_gym-master/resources/robots/anymal_c/meshes/hip_l.dae
36.12KB
legged_gym-master/resources/robots/anymal_c/meshes/hip_r.dae
36.24KB
legged_gym-master/resources/robots/anymal_c/meshes/lidar.dae
35.54KB
legged_gym-master/resources/robots/anymal_c/meshes/lidar.jpg
180.25KB
legged_gym-master/resources/robots/anymal_c/meshes/lidar_cage.dae
65.05KB
legged_gym-master/resources/robots/anymal_c/meshes/lidar_cage.jpg
276.1KB
legged_gym-master/resources/robots/anymal_c/meshes/remote.dae
42.31KB
legged_gym-master/resources/robots/anymal_c/meshes/remote.jpg
107.39KB
legged_gym-master/resources/robots/anymal_c/meshes/shank.jpg
164.99KB
legged_gym-master/resources/robots/anymal_c/meshes/shank_l.dae
231.49KB
legged_gym-master/resources/robots/anymal_c/meshes/shank_r.dae
233.65KB
legged_gym-master/resources/robots/anymal_c/meshes/thigh.dae
259.62KB
legged_gym-master/resources/robots/anymal_c/meshes/thigh.jpg
230.57KB
legged_gym-master/resources/robots/anymal_c/meshes/top_shell.dae
1.27MB
legged_gym-master/resources/robots/anymal_c/meshes/top_shell.jpg
213.05KB
legged_gym-master/resources/robots/anymal_c/meshes/wide_angle_camera.dae
20.24KB
legged_gym-master/resources/robots/anymal_c/meshes/wide_angle_camera.jpg
152.19KB
legged_gym-master/resources/robots/anymal_c/urdf/
-
legged_gym-master/resources/robots/anymal_c/urdf/anymal_c.urdf
53.17KB
legged_gym-master/resources/robots/cassie/
-
legged_gym-master/resources/robots/cassie/cassie_license.txt
1.06KB
legged_gym-master/resources/robots/cassie/meshes/
-
legged_gym-master/resources/robots/cassie/meshes/abduction.stl
127.43KB
legged_gym-master/resources/robots/cassie/meshes/abduction_mirror.stl
127.82KB
legged_gym-master/resources/robots/cassie/meshes/achilles-rod.stl
15.02KB
legged_gym-master/resources/robots/cassie/meshes/hip.stl
58.04KB
legged_gym-master/resources/robots/cassie/meshes/hip_mirror.stl
58.04KB
legged_gym-master/resources/robots/cassie/meshes/knee-output.stl
66.63KB
legged_gym-master/resources/robots/cassie/meshes/knee-output_mirror.stl
66.59KB
legged_gym-master/resources/robots/cassie/meshes/pelvis.stl
177.43KB
legged_gym-master/resources/robots/cassie/meshes/plantar-rod.stl
12.58KB
legged_gym-master/resources/robots/cassie/meshes/shin-bone.stl
125.86KB
legged_gym-master/resources/robots/cassie/meshes/shin-bone_mirror.stl
126.25KB
legged_gym-master/resources/robots/cassie/meshes/tarsus.stl
112.97KB
legged_gym-master/resources/robots/cassie/meshes/tarsus_mirror.stl
112.53KB
legged_gym-master/resources/robots/cassie/meshes/thigh.stl
241.15KB
legged_gym-master/resources/robots/cassie/meshes/thigh_mirror.stl
241.15KB
legged_gym-master/resources/robots/cassie/meshes/toe-output-crank.stl
28.06KB
legged_gym-master/resources/robots/cassie/meshes/toe.stl
39.68KB
legged_gym-master/resources/robots/cassie/meshes/toe_mirror.stl
39.68KB
legged_gym-master/resources/robots/cassie/meshes/torso.stl
1.31MB
legged_gym-master/resources/robots/cassie/meshes/yaw.stl
134.46KB
legged_gym-master/resources/robots/cassie/meshes/yaw_mirror.stl
134.6KB
legged_gym-master/resources/robots/cassie/urdf/
-
legged_gym-master/resources/robots/cassie/urdf/cassie.urdf
16.53KB
legged_gym-master/setup.py
405B

资源内容介绍

legged-gym包
# Isaac Gym Environments for Legged Robots #This repository provides the environment used to train ANYmal (and other robots) to walk on rough terrain using NVIDIA's Isaac Gym.It includes all components needed for sim-to-real transfer: actuator network, friction & mass randomization, noisy observations and random pushes during training. **Maintainer**: Nikita Rudin **Affiliation**: Robotic Systems Lab, ETH Zurich **Contact**: rudinn@ethz.ch ---### :bell: Announcement (09.01.2024) ###With the shift from Isaac Gym to Isaac Sim at NVIDIA, we have migrated all the environments from this work to [Isaac Lab](https://github.com/isaac-sim/IsaacLab). Following this migration, this repository will receive limited updates and support. We encourage all users to migrate to the new framework for their applications.Information about this work's locomotion-related tasks in Isaac Lab is available [here](https://isaac-sim.github.io/IsaacLab/source/features/environments.html#locomotion).---### Useful Links ###Project website: https://leggedrobotics.github.io/legged_gym/ Paper: https://arxiv.org/abs/2109.11978### Installation ###1. Create a new python virtual env with python 3.6, 3.7 or 3.8 (3.8 recommended)2. Install pytorch 1.10 with cuda-11.3: - `pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html`3. Install Isaac Gym - Download and install Isaac Gym Preview 3 (Preview 2 will not work!) from https://developer.nvidia.com/isaac-gym - `cd isaacgym/python && pip install -e .` - Try running an example `cd examples && python 1080_balls_of_solitude.py` - For troubleshooting check docs `isaacgym/docs/index.html`)4. Install rsl_rl (PPO implementation) - Clone https://github.com/leggedrobotics/rsl_rl - `cd rsl_rl && git checkout v1.0.2 && pip install -e .` 5. Install legged_gym - Clone this repository - `cd legged_gym && pip install -e .`### CODE STRUCTURE ###1. Each environment is defined by an env file (`legged_robot.py`) and a config file (`legged_robot_config.py`). The config file contains two classes: one containing all the environment parameters (`LeggedRobotCfg`) and one for the training parameters (`LeggedRobotCfgPPo`). 2. Both env and config classes use inheritance. 3. Each non-zero reward scale specified in `cfg` will add a function with a corresponding name to the list of elements which will be summed to get the total reward. 4. Tasks must be registered using `task_registry.register(name, EnvClass, EnvConfig, TrainConfig)`. This is done in `envs/__init__.py`, but can also be done from outside of this repository. ### Usage ###1. Train: ```python legged_gym/scripts/train.py --task=anymal_c_flat``` - To run on CPU add following arguments: `--sim_device=cpu`, `--rl_device=cpu` (sim on CPU and rl on GPU is possible). - To run headless (no rendering) add `--headless`. - **Important**: To improve performance, once the training starts press `v` to stop the rendering. You can then enable it later to check the progress. - The trained policy is saved in `issacgym_anymal/logs/<experiment_name>/<date_time>_<run_name>/model_<iteration>.pt`. Where `<experiment_name>` and `<run_name>` are defined in the train config. - The following command line arguments override the values set in the config files: - --task TASK: Task name. - --resume: Resume training from a checkpoint - --experiment_name EXPERIMENT_NAME: Name of the experiment to run or load. - --run_name RUN_NAME: Name of the run. - --load_run LOAD_RUN: Name of the run to load when resume=True. If -1: will load the last run. - --checkpoint CHECKPOINT: Saved model checkpoint number. If -1: will load the last checkpoint. - --num_envs NUM_ENVS: Number of environments to create. - --seed SEED: Random seed. - --max_iterations MAX_ITERATIONS: Maximum number of training iterations.2. Play a trained policy: ```python legged_gym/scripts/play.py --task=anymal_c_flat``` - By default, the loaded policy is the last model of the last run of the experiment folder. - Other runs/model iteration can be selected by setting `load_run` and `checkpoint` in the train config.### Adding a new environment ###The base environment `legged_robot` implements a rough terrain locomotion task. The corresponding cfg does not specify a robot asset (URDF/ MJCF) and has no reward scales. 1. Add a new folder to `envs/` with `'<your_env>_config.py`, which inherit from an existing environment cfgs 2. If adding a new robot: - Add the corresponding assets to `resources/`. - In `cfg` set the asset path, define body names, default_joint_positions and PD gains. Specify the desired `train_cfg` and the name of the environment (python class). - In `train_cfg` set `experiment_name` and `run_name`3. (If needed) implement your environment in <your_env>.py, inherit from an existing environment, overwrite the desired functions and/or add your reward functions.4. Register your env in `isaacgym_anymal/envs/__init__.py`.5. Modify/Tune other parameters in your `cfg`, `cfg_train` as needed. To remove a reward set its scale to zero. Do not modify parameters of other envs!### Troubleshooting ###1. If you get the following error: `ImportError: libpython3.8m.so.1.0: cannot open shared object file: No such file or directory`, do: `sudo apt install libpython3.8`. It is also possible that you need to do `export LD_LIBRARY_PATH=/path/to/libpython/directory` / `export LD_LIBRARY_PATH=/path/to/conda/envs/your_env/lib`(for conda user. Replace /path/to/ to the corresponding path.).### Known Issues ###1. The contact forces reported by `net_contact_force_tensor` are unreliable when simulating on GPU with a triangle mesh terrain. A workaround is to use force sensors, but the force are propagated through the sensors of consecutive bodies resulting in an undesirable behaviour. However, for a legged robot it is possible to add sensors to the feet/end effector only and get the expected results. When using the force sensors make sure to exclude gravity from the reported forces with `sensor_options.enable_forward_dynamics_forces`. Example:``` sensor_pose = gymapi.Transform() for name in feet_names: sensor_options = gymapi.ForceSensorProperties() sensor_options.enable_forward_dynamics_forces = False # for example gravity sensor_options.enable_constraint_solver_forces = True # for example contacts sensor_options.use_world_frame = True # report forces in world frame (easier to get vertical components) index = self.gym.find_asset_rigid_body_index(robot_asset, name) self.gym.create_asset_force_sensor(robot_asset, index, sensor_pose, sensor_options) (...) sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim) self.gym.refresh_force_sensor_tensor(self.sim) force_sensor_readings = gymtorch.wrap_tensor(sensor_tensor) self.sensor_forces = force_sensor_readings.view(self.num_envs, 4, 6)[..., :3] (...) self.gym.refresh_force_sensor_tensor(self.sim) contact = self.sensor_forces[:, :, 2] > 1.```

用户评论 (0)

发表评论

captcha