麻雀搜索算法(SSA)文章复现:《基于混沌麻雀搜索算法的无人机航迹规划方法-汤安迪》 策略为:立方混沌+反向学习初始化种群+反向精英策略改进发现者策略+正余弦算法改进加入者策略+动态调整警觉者
资源内容介绍
麻雀搜索算法(SSA)文章复现:《基于混沌麻雀搜索算法的无人机航迹规划方法_汤安迪》 策略为:立方混沌+反向学习初始化种群+反向精英策略改进发现者策略+正余弦算法改进加入者策略+动态调整警觉者数量+高斯策略扰动——CSSA。 复现内容包括:改进算法实现、23个基准测试函数、文中混沌图分析、与SSA对比等。 代码基本上每一步都有注释,非常易懂,代码质量极高,便于新手学习和理解。 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90185037/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90185037/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于混沌麻雀搜索算法的无人机航迹规划方法<span class="ff2">_</span>汤安迪</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff3">:</span>无人机航迹规划是无人机系统中的一项关键技术<span class="ff3">,</span>影响着无人机的任务执行效率和安全性<span class="ff4">。</span>本</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">文基于混沌麻雀搜索算法<span class="ff3">(<span class="ff2">SSA</span>),</span>提出了一种改进的无人机航迹规划方法<span class="ff4">。</span>首先<span class="ff3">,</span>介绍了<span class="_ _0"> </span><span class="ff2">SSA<span class="_ _1"> </span></span>的基</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">本原理和特点<span class="ff3">;</span>然后<span class="ff3">,</span>详细阐述了改进的<span class="_ _0"> </span><span class="ff2">SSA<span class="_ _1"> </span></span>策略<span class="ff3">,</span>包括立方混沌<span class="ff4">、</span>反向学习初始化种群<span class="ff4">、</span>反向精英</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">策略改进发现者策略<span class="ff4">、</span>正余弦算法改进加入者策略<span class="ff4">、</span>动态调整警觉者数量以及高斯策略扰动<span class="ff3">;</span>接着<span class="ff3">,</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">进行了<span class="_ _0"> </span><span class="ff2">23<span class="_ _1"> </span></span>个基准测试函数的改进算法实现<span class="ff3">,</span>并对改进算法与<span class="_ _0"> </span><span class="ff2">SSA<span class="_ _1"> </span></span>进行了对比分析<span class="ff3">;</span>最后<span class="ff3">,</span>通过混沌</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">图分析加深了对改进算法的理解<span class="ff4">。</span>通过本文的研究<span class="ff3">,</span>我们发现改进的<span class="_ _0"> </span><span class="ff2">SSA<span class="_ _1"> </span></span>在航迹规划中具有更好的搜</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">索性能和收敛效果<span class="ff3">,</span>能够提高无人机的任务执行效率和安全性<span class="ff4">。</span></div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">引言</span></div><div class="t m0 x2 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">无人机系统作为一种重要的智能飞行器<span class="ff3">,</span>广泛应用于军事<span class="ff4">、</span>民用和商业领域<span class="ff4">。</span>无人机航迹规划是</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">无人机系统中的关键技术之一<span class="ff3">,</span>其目标是通过合理规划无人机的航迹<span class="ff3">,</span>实现高效<span class="ff4">、</span>安全<span class="ff4">、</span>稳定的无人</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">机任务执行<span class="ff4">。</span>传统的航迹规划方法存在搜索能力较弱<span class="ff4">、</span>收敛速度慢等问题<span class="ff3">,</span>需要引入更加高效的优化</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">算法来改进航迹规划性能<span class="ff4">。</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">混沌麻雀搜索算法<span class="ff3">(</span></span>SSA<span class="ff3">)</span></div><div class="t m0 x2 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">2.1.<span class="_"> </span><span class="ff1">基本原理</span></div><div class="t m0 x2 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">SSA<span class="_ _1"> </span><span class="ff1">是一种基于混沌理论和自然鸟群行为模拟的优化算法<span class="ff3">,</span>其基本原理是将鸟群搜索中的觅食行</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">为和警戒行为抽象为算法的运算过程<span class="ff4">。</span>它通过模拟鸟群在搜索和发现过程中的行为<span class="ff3">,</span>实现对优化问题</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">的全局搜索和局部优化<span class="ff4">。</span></div><div class="t m0 x2 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">2.2.<span class="_"> </span><span class="ff1">算法特点</span></div><div class="t m0 x2 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">SSA<span class="_ _1"> </span><span class="ff1">具有以下几个特点<span class="ff3">:</span></span></div><div class="t m0 x2 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">-<span class="_ _2"> </span><span class="ff1">混沌搜索过程能够提高全局搜索能力<span class="ff3">,</span>增加算法的探索性<span class="ff4">。</span></span></div><div class="t m0 x2 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">-<span class="_ _2"> </span><span class="ff1">鸟群行为模拟能够提高局部搜索能力<span class="ff3">,</span>增加算法的收敛性<span class="ff4">。</span></span></div><div class="t m0 x2 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">-<span class="_ _2"> </span><span class="ff1">算法使用了多种策略相结合<span class="ff3">,</span>兼顾了搜索和优化的能力<span class="ff4">。</span></span></div><div class="t m0 x2 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">-<span class="_ _2"> </span><span class="ff1">算法能够自适应调整搜索过程中的参数<span class="ff3">,</span>提高算法的适应性和鲁棒性<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">3. <span class="ff1">改进的<span class="_ _0"> </span></span>SSA<span class="_ _1"> </span><span class="ff1">策略<span class="ff3">(</span></span>CSSA<span class="ff3">)</span></div><div class="t m0 x2 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">3.1 <span class="ff1">立方混沌</span></div><div class="t m0 x2 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">立方混沌是一种基于高维混沌映射的混沌序列生成方式<span class="ff3">,</span>通过引入立方混沌能够增加搜索空间的</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">多样性<span class="ff3">,</span>提高算法的全局搜索能力<span class="ff4">。</span></div><div class="t m0 x2 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">3.2 <span class="ff1">反向学习初始化种群</span></div><div class="t m0 x2 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">反向学习初始化种群是一种改进的初始种群生成策略<span class="ff3">,</span>通过学习历史搜索过程中的经验<span class="ff3">,</span>使得初</div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0">始种群能够更好地适应当前问题的搜索空间特征<span class="ff3">,</span>提高算法的收敛速度和精度<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>