基于的滑模观测器.zip
大小:233.15KB
价格:14积分
下载量:0
评分:
5.0
上传者:AucIbENR
更新日期:2025-09-22

基于PLL的SMO滑模观测器算法,永磁同步电机无传感器矢量控制,跟基于反正切的SMO做对比,可以有效消除转速的抖动

资源文件列表(大概)

文件名
大小
1.jpg
79.84KB
2.jpg
92.63KB
3.jpg
113.45KB
基于的滑模观测器算法在无传感器矢.doc
2.29KB
基于的滑模观测器算法在永磁同步.txt
2.06KB
基于的滑模观测器算法在永磁同步电机无.txt
1.87KB
基于的滑模观测器算法在永磁同步电机无传感器矢量.txt
2.06KB
基于的滑模观测器算法是一种用于永磁同步电.txt
1.29KB
基于的滑模观测器算法永磁同步电机.txt
2.44KB
基于的滑模观测器算法永磁同步电机无传感器矢.html
4.5KB
基于的滑模观测器算法永磁同步电机无传感器矢量控制.txt
154B

资源内容介绍

基于PLL的SMO滑模观测器算法,永磁同步电机无传感器矢量控制,跟基于反正切的SMO做对比,可以有效消除转速的抖动。
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90182747/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90182747/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>滑模观测器算法在无传感器矢量控制中的应用</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">引言<span class="ff3">:</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着信息技术的快速进步<span class="ff3">,</span>无传感器矢量控制成为了现代电机控制领域的一项重要技术<span class="ff4">。</span>在无传感器</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">矢量控制中<span class="ff3">,</span>精确估计电机转速对于实现准确控制至关重要<span class="ff4">。</span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">传统的无传感器矢量控制方法中使用的滑模观测器<span class="ff3">(<span class="ff2">Sliding Mode Observer</span>,<span class="ff2">SMO</span>)</span>算法能够有</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">效地估计电机转速<span class="ff3">,</span>但在实际应用中存在转速抖动的问题<span class="ff4">。</span>为了解决这个问题<span class="ff3">,</span>本文提出了一种基于</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">相位锁定环路<span class="ff3">(<span class="ff2">Phase-Locked Loop</span>,<span class="ff2">PLL</span>)</span>的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>滑模观测器算法<span class="ff3">,</span>该算法能够显著降低转速抖</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">动<span class="ff3">,</span>提高系统控制性能<span class="ff4">。</span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、<span class="ff2">SMO<span class="_ _1"> </span></span></span>滑模观测器算法原理</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">滑模观测器是一种基于滑模理论的估计算法<span class="ff3">,</span>在无传感器矢量控制中被广泛应用<span class="ff4">。</span>其原理是通过引入</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">滑模面<span class="ff3">,</span>在滑模面上实时观测电机状态并估计转速<span class="ff4">。</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>的估计算法可用于无传感器矢量控制中<span class="ff3">,</span>但在实际应用中<span class="ff3">,</span>由于环境噪声和参数摄动的存在</div><div class="t m0 x1 h2 yd ff3 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">传统的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>算法存在转速抖动的问题<span class="ff4">。</span>为了解决这个问题</span>,<span class="ff1">本文提出了一种基于<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>滑模</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">观测器算法<span class="ff4">。</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>基于<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>滑模观测器算法设计</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span>PLL<span class="_ _1"> </span><span class="ff1">原理</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">PLL<span class="_ _1"> </span><span class="ff1">是一种常用的控制系统技术<span class="ff3">,</span>在通信和电力电子等领域有广泛应用<span class="ff4">。</span>其主要原理是通过将参考信</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">号与系统输出信号进行比较<span class="ff3">,</span>调整控制参数来实现精确的锁相跟踪<span class="ff4">。</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">在基于<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>滑模观测器算法中<span class="ff3">,</span>我们利用<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的相位锁定环路来对电机转速进行估计<span class="ff4">。</span>通过</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">将锁相环路的参考信号与滑模观测器输出的估计值进行比较<span class="ff3">,</span>我们可以实时调整<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的参数<span class="ff3">,</span>使得估</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">计值与实际值更加接近<span class="ff3">,</span>从而减小转速抖动<span class="ff4">。</span></div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>SMO<span class="_ _1"> </span><span class="ff1">滑模观测器算法设计</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">PLL<span class="_ _1"> </span></span>的<span class="_ _0"> </span><span class="ff2">SMO<span class="_ _1"> </span></span>滑模观测器算法主要包括以下几个步骤<span class="ff3">:</span></div><div class="t m0 x1 h2 y18 ff3 fs0 fc0 sc0 ls0 ws0">(<span class="ff2">1</span>)<span class="ff1">滑模面设计</span>:<span class="ff1">根据电机的动态特性和系统要求</span>,<span class="ff1">设计适当的滑模面</span>,<span class="ff1">以实现对电机状态的观测</span></div><div class="t m0 x1 h3 y19 ff4 fs0 fc0 sc0 ls0 ws0">。</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>

用户评论 (0)

发表评论

captcha

相关资源

MATLAB计算声发射b值(或熵值,或活动度S值,变异系数CV值,均值与方差,以及自相关系数Acf,六选一)p文件资料包(计算间隔和滑动窗口可调)

MATLAB计算声发射b值(或熵值,或活动度S值,变异系数CV值,均值与方差,以及自相关系数Acf,六选一)p文件资料包(计算间隔和滑动窗口可调)

888.84KB50积分

基于三菱PLC和组态王恒温控制系统的设计加热炉温度控制带解释的梯形图程序,接线图原理图图纸,io分配,组态画面

基于三菱PLC和组态王恒温控制系统的设计加热炉温度控制带解释的梯形图程序,接线图原理图图纸,io分配,组态画面

616.43KB49积分

利用BP神经网络来预测不同工况下的轮胎侧向力,从carsim中获得数据,利用BP神经网络训练得到轮胎侧向力估计模型 主要内容如下:1、在线计算k值,可便于后续和别的控制器联合,2、利用BP神经网

利用BP神经网络来预测不同工况下的轮胎侧向力,从carsim中获得数据,利用BP神经网络训练得到轮胎侧向力估计模型。主要内容如下:1、在线计算k值,可便于后续和别的控制器联合,2、利用BP神经网络对从carsim中获得的轮胎数据进行训练获得精准的神经网络模型,并生成simulink模块3、将生成的simulink模块和LQR控制器结合,实时估计轮胎侧向力。4、内含有帮助文档图为108km h下的单移线轨迹跟踪效果,侧向力估计效果,以及BP神经网络的预测误差,轮胎侧向力预测效果还不错

393.76KB10积分

S7-200 组态王 组态王单容液位控制带解释的梯形图程序,接线图原理图图纸,io分配,组态画面

S7-200 组态王 组态王单容液位控制带解释的梯形图程序,接线图原理图图纸,io分配,组态画面

9.6KB48积分