基于两轮差速移动机器人的模型预测控制(mpc)轨迹跟踪(simulnk模型加matlab代码,无联合仿真,横纵向跟踪) ,最新1.轮式移动机器人(WMR,wheeled mobile robot)
资源内容介绍
基于两轮差速移动机器人的模型预测控制(mpc)轨迹跟踪(simulnk模型加matlab代码,无联合仿真,横纵向跟踪) ,最新1.轮式移动机器人(WMR,wheeled mobile robot) 基于两轮差速移动机器人的模型预测控制轨迹跟踪,既可以实现车速的跟踪,又可以实现对路径的跟踪; 2.采用simulnk搭建模型主体,matlab代码搭建MPC控制器,无联合仿真 3.设置了5种轨迹,包括三种车速的圆形轨迹,单车速的直线轨迹,单车速的双移线轨迹,仿真效果如图。 4.包含绘制对比分析图片的代码,可一键绘制轨迹对北比图5.为了使控制量输出平稳,MPCc控制器采用控制增量建立 6.代码规范,重点部分有注释 7.,有参考lunwen <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90214450/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90214450/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">基于两轮差速移动机器人的模型预测控制轨迹跟踪</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">在讨论技术领域的发展与创新时<span class="ff3">,</span>我们都注重将最新技术和解决方案带入到实践中<span class="ff4">。</span>以下围绕当前热</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">门的话题<span class="ff1">——</span>基于两轮差速移动机器人的模型预测控制轨迹跟踪<span class="ff3">,</span>为您详细分析<span class="ff3">,</span>并展示其实际应用<span class="ff4">。</span></div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>背景介绍</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">随着工业自动化和机器人技术的飞速发展<span class="ff3">,</span>移动机器人已经广泛应用于各种领域<span class="ff3">,</span>包括但不限于物流</div><div class="t m0 x1 h2 y6 ff4 fs0 fc0 sc0 ls0 ws0">、<span class="ff2">环卫</span>、<span class="ff2">安保等</span>。<span class="ff2">其中<span class="ff3">,</span>基于两轮差速移动机器人的模型预测控制轨迹跟踪技术<span class="ff3">,</span>是一种先进的控制</span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">策略<span class="ff3">,</span>它结合了模型预测控制<span class="ff1">(MPC)</span>和轨迹跟踪技术<span class="ff3">,</span>旨在实现车速和路径的双重跟踪<span class="ff4">。</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>模型预测控制轨迹跟踪技术概述</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _0"> </span><span class="ff2">模型预测控制是一种优化技术<span class="ff3">,</span>通过建立被控对象的数学模型<span class="ff3">,</span>并利用预测和控制理论进行优化</span></div><div class="t m0 x2 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">决策<span class="ff3">,</span>以达到期望的性能指标<span class="ff4">。</span>在轨迹跟踪领域<span class="ff3">,<span class="ff1">MPC<span class="_ _1"> </span></span></span>控制器通过预测未来状态和动作<span class="ff3">,</span>优化系</div><div class="t m0 x2 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">统性能<span class="ff3">,</span>实现轨迹跟踪<span class="ff4">。</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _0"> </span><span class="ff2">使用<span class="_ _2"> </span></span>simulnk<span class="_ _1"> </span><span class="ff2">搭建模型主体<span class="ff3">,</span>通过<span class="_ _2"> </span></span>MATLAB<span class="_ _1"> </span><span class="ff2">代码搭建<span class="_ _2"> </span></span>MPC<span class="_ _1"> </span><span class="ff2">控制器<span class="ff4">。</span>这种无联合仿真的方式<span class="ff3">,</span></span></div><div class="t m0 x2 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">使得技术实现更加灵活和高效<span class="ff4">。</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、</span>轨迹设置与仿真分析</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">为了满足不同的应用需求<span class="ff3">,</span>我们设计了五种不同的轨迹类型<span class="ff3">:</span>包括三种车速的圆形轨迹<span class="ff4">、</span>单车速的直</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">线轨迹<span class="ff4">、</span>单车速的双移线轨迹<span class="ff4">。</span>通过仿真分析<span class="ff3">,</span>我们可以直观地看到这些轨迹的运行效果<span class="ff4">。</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff4">、</span>代码实现与效果展示</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">在代码实现方面<span class="ff3">,</span>我们采用了<span class="_ _2"> </span><span class="ff1">MATLAB<span class="_ _1"> </span></span>的<span class="_ _2"> </span><span class="ff1">Simulink<span class="_ _1"> </span></span>工具箱进行建模和仿真<span class="ff4">。</span>在<span class="_ _2"> </span><span class="ff1">MATLAB<span class="_ _1"> </span></span>代码中<span class="ff3">,</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">我们搭建了<span class="_ _2"> </span><span class="ff1">MPC<span class="_ _1"> </span></span>控制器<span class="ff3">,</span>实现了对轨迹的预测和控制<span class="ff4">。</span>同时<span class="ff3">,</span>我们使用了对比分析图片的代码<span class="ff3">,</span>可以</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">一键绘制轨迹对比图<span class="ff3">,</span>方便用户直观地比较不同轨迹的运行效果<span class="ff4">。</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">五<span class="ff4">、</span>控制策略与实现要点</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">为了使控制量输出平稳<span class="ff3">,<span class="ff1">MPC<span class="_ _1"> </span></span></span>控制器采用了控制增量建立<span class="ff4">。</span>此外<span class="ff3">,</span>代码规范也是非常重要的部分<span class="ff3">,</span>包</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">括注释的使用等<span class="ff4">。</span>这些规范不仅提高了代码的可读性<span class="ff3">,</span>也提高了代码的质量<span class="ff4">。</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">六<span class="ff4">、</span>结论与展望</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>