基于规则算法-功率跟随控制燃料电池汽车能量管理策略 advisor车辆数据 电池SOC为电量维持型策略 应用于nedc和udds工况,matlab 数据分析
资源内容介绍
基于规则算法-功率跟随控制燃料电池汽车能量管理策略 advisor车辆数据 电池SOC为电量维持型策略。应用于nedc和udds工况,matlab 数据分析 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213989/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213989/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">基于规则算法与功率跟随控制的燃料电池汽车能量管理策略分析</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">随着新能源汽车市场的蓬勃发展<span class="ff4">,</span>燃料电池汽车<span class="ff4">(<span class="ff1">FCV</span>)</span>的能量管理策略成为了研究的热点<span class="ff3">。</span>能量管</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">理策略的优化直接关系到车辆的性能<span class="ff3">、</span>续航里程以及使用成本<span class="ff3">。</span>本文旨在探讨基于规则算法的功率跟</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">随控制策略在燃料电池汽车能量管理中的应用<span class="ff4">,</span>特别是在<span class="_ _0"> </span><span class="ff1">NEDC<span class="ff4">(</span></span>新欧洲驾驶循环<span class="ff4">)</span>和<span class="_ _0"> </span><span class="ff1">UDDS<span class="ff4">(</span></span>美国市</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">区及郊区综合工况<span class="ff4">)</span>下的实际表现<span class="ff3">。</span>通过<span class="_ _0"> </span><span class="ff1">MATLAB<span class="_ _1"> </span></span>数据分析工具<span class="ff4">,</span>我们深入剖析了基于规则算法的功</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">率分配对电池<span class="_ _0"> </span><span class="ff1">SOC<span class="ff4">(</span></span>电量状态<span class="ff4">)</span>的影响<span class="ff4">,</span>为维持电量稳定型策略提供理论支撑<span class="ff3">。</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>功率跟随控制策略概述</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">功率跟随控制策略是燃料电池汽车能量管理中的一种重要方法<span class="ff3">。</span>其核心思想是根据车辆实时需求功率</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">调整燃料电池的输出功率<span class="ff4">,</span>确保电池工作在高效区域<span class="ff4">,</span>同时维持电池<span class="_ _0"> </span><span class="ff1">SOC<span class="_ _1"> </span></span>在一个设定的目标范围内<span class="ff3">。</span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">这种策略结合了规则算法<span class="ff4">,</span>通过预设的规则或决策逻辑来分配发动机和电池的功率输出<span class="ff4">,</span>以达到优化</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">能量使用和提高车辆性能的目的<span class="ff3">。</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>基于规则算法的功率跟随控制在能量管理中的应用</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">在燃料电池汽车中<span class="ff4">,</span>基于规则算法的功率跟随控制策略通常根据车辆行驶状态<span class="ff3">、</span>车速<span class="ff3">、</span>加速度<span class="ff3">、</span>电池</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">SOC<span class="_ _1"> </span><span class="ff2">等因素来动态调整功率分配<span class="ff3">。</span>当车辆处于加速状态时<span class="ff4">,</span>需要更大的功率输出<span class="ff4">,</span>此时燃料电池会提</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">供大部分功率<span class="ff4">,</span>同时电池也会补充一部分以维持<span class="_ _0"> </span><span class="ff1">SOC<span class="_ _1"> </span></span>的稳定<span class="ff4">;</span>当车辆处于匀速或减速状态时<span class="ff4">,</span>则通过</div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">调整燃料电池的输出功率和电池的充放电状态来保持<span class="_ _0"> </span><span class="ff1">SOC<span class="_ _1"> </span></span>的稳定<span class="ff3">。</span>这种动态调整的策略能够确保燃料</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">电池在高效区域内工作<span class="ff4">,</span>并减少电池充放电造成的能量损失<span class="ff3">。</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、</span>在<span class="_ _0"> </span><span class="ff1">NEDC<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff1">UDDS<span class="_ _1"> </span></span>工况下的性能分析</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">NEDC<span class="_ _1"> </span><span class="ff2">和<span class="_ _0"> </span></span>UDDS<span class="_ _1"> </span><span class="ff2">作为两种典型的工况测试标准<span class="ff4">,</span>代表了不同的驾驶环境和车辆运行条件<span class="ff3">。</span>在这两种工</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">况下<span class="ff4">,</span>基于规则算法的功率跟随控制策略表现出良好的性能<span class="ff3">。</span>特别是在<span class="_ _0"> </span><span class="ff1">UDDS<span class="_ _1"> </span></span>这种复杂的城市与郊区</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">循环中<span class="ff4">,</span>策略的灵活性和适应性能够有效应对多变的行驶环境<span class="ff4">,</span>保持燃料电池的工作效率同时维持电</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">池<span class="_ _0"> </span><span class="ff1">SOC<span class="_ _1"> </span></span>的稳定<span class="ff3">。</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">五<span class="ff3">、<span class="ff1">MATLAB<span class="_ _1"> </span></span></span>数据分析与应用实例</div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">本文通过<span class="_ _0"> </span><span class="ff1">MATLAB<span class="_ _1"> </span></span>数据分析工具对基于规则算法的功率跟随控制策略进行了仿真分析<span class="ff3">。</span>通过构建车辆</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">动力学模型<span class="ff3">、</span>燃料电池模型以及电池模型<span class="ff4">,</span>模拟了车辆在<span class="_ _0"> </span><span class="ff1">NEDC<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff1">UDDS<span class="_ _1"> </span></span>工况下的运行状况<span class="ff3">。</span>通过数</div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">据分析<span class="ff4">,</span>验证了策略的有效性和优越性<span class="ff4">,</span>为实际应用提供了有力的理论支撑<span class="ff3">。</span></div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">六<span class="ff3">、</span>结论与展望</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>