基于非支配排序的多目标鱼鹰优化算法(NSOOA)求解柔性作业车间调度问题FJSP(MATLAB代码)

IjNBDlLJgmaeZIP基于非支配排序的多目标鱼鹰.zip  167.89KB

资源文件列表:

ZIP 基于非支配排序的多目标鱼鹰.zip 大约有7个文件
  1. 1.jpg 187.15KB
  2. 基于非支配排序的多目标鱼鹰优.html 4.14KB
  3. 基于非支配排序的多目标鱼鹰优化算法求.txt 2.17KB
  4. 基于非支配排序的多目标鱼鹰优化算法求解柔.txt 132B
  5. 基于非支配排序的多目标鱼鹰优化算法求解柔性作业.doc 2.17KB
  6. 根据您的要求以下是关于基于三相整流器直接.txt 2.12KB
  7. 非支配排序的多目标鱼鹰优化算法在.txt 2.53KB

资源介绍:

基于非支配排序的多目标鱼鹰优化算法(NSOOA)求解柔性作业车间调度问题FJSP(MATLAB代码)

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213731/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213731/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">基于非支配排序的多目标鱼鹰优化算法求解柔性作业车间调度问题<span class="_ _0"> </span></span>FJSP<span class="_ _1"> </span><span class="ff2">的技术分析博客</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">在信息技术的快速发展下<span class="ff4">,</span>制造业已成为国家经济发展的重要支柱<span class="ff3">。</span>在复杂多变的市场环境下<span class="ff4">,</span>如何</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">合理安排柔性作业车间调度问题<span class="ff4">(<span class="ff1">FJSP</span>)</span>成为了制造业领域的热门话题<span class="ff3">。</span>本篇文章将围绕非支配排序</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">的多目标鱼鹰优化算法<span class="ff4">(<span class="ff1">NSOOA</span>)</span>进行深入分析<span class="ff4">,</span>旨在为解决这类问题提供参考<span class="ff3">。</span></div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、<span class="ff1">NSOOA<span class="_ _1"> </span></span></span>算法简介</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">非支配排序的多目标优化算法是一种新型的优化算法<span class="ff4">,</span>其基本思想是通过非支配排序和遗传算法相结</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">合的方式<span class="ff4">,</span>寻找到满足多个目标函数的最优解<span class="ff3">。<span class="ff1">NSOOA<span class="_ _1"> </span></span></span>算法以其优良的解空间搜索能力和全局搜索能</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">力<span class="ff4">,</span>在解决复杂优化问题方面具有显著优势<span class="ff3">。</span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>柔性作业车间调度问题的特点</div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">柔性作业车间调度问题是一个典型的<span class="_ _0"> </span><span class="ff1">NP<span class="_ _1"> </span></span>难题<span class="ff4">,</span>其特点在于作业种类繁多<span class="ff3">、</span>资源有限<span class="ff3">、</span>时间约束严格</div><div class="t m0 x1 h2 yc ff3 fs0 fc0 sc0 ls0 ws0">。<span class="ff2">解决这类问题需要综合考虑生产效率</span>、<span class="ff2">资源利用率</span>、<span class="ff2">作业完成时间等多个因素</span>。</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、<span class="ff1">NSOOA<span class="_ _1"> </span></span></span>算法在<span class="_ _0"> </span><span class="ff1">FJSP<span class="_ _1"> </span></span>中的应用</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">NSOOA<span class="_ _1"> </span><span class="ff2">算法在柔性作业车间调度问题中的应用主要体现在以下几个方面<span class="ff4">:</span></span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">优化目标<span class="ff4">:</span>通过非支配排序机制<span class="ff4">,</span>将多个目标函数进行综合考虑<span class="ff4">,</span>找到满足多种约束条件的最优</span></div><div class="t m0 x2 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">解<span class="ff3">。</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff2">求解过程<span class="ff4">:</span>采用遗传算法进行全局搜索<span class="ff4">,</span>结合非支配排序机制进行局部搜索<span class="ff4">,</span>从而找到问题的近</span></div><div class="t m0 x2 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">似最优解<span class="ff3">。</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">五<span class="ff3">、<span class="ff1">MATLAB<span class="_ _1"> </span></span></span>代码实现</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">为了更好地理解<span class="_ _0"> </span><span class="ff1">NSOOA<span class="_ _1"> </span></span>算法在<span class="_ _0"> </span><span class="ff1">FJSP<span class="_ _1"> </span></span>中的应用<span class="ff4">,</span>下面以<span class="_ _0"> </span><span class="ff1">MATLAB<span class="_ _1"> </span></span>代码为例进行详细说明<span class="ff3">。</span>假设我们</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">有以下的<span class="_ _0"> </span><span class="ff1">FJSP<span class="_ _1"> </span></span>问题描述<span class="ff4">:</span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">“<span class="ff2">在一个柔性作业车间中<span class="ff4">,</span>需要安排一系列的作业任务<span class="ff4">,</span>同时考虑生产效率<span class="ff3">、</span>资源利用率和时间约束</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">等多个因素<span class="ff3">。</span>目标是找到最优的作业调度方案<span class="ff4">,</span>以达到最大化生产效率和最小化生产成本的目标<span class="ff3">。<span class="ff1">”</span></span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">具体实现过程如下<span class="ff4">:</span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">数据输入<span class="ff4">:</span>通过数据分析工具获取作业任务数据<span class="ff3">、</span>车间资源数据<span class="ff3">、</span>生产效率数据等关键信息<span class="ff3">。</span></span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha