基于非线性模型预测控制NMPC的无人船,无人艇的轨迹跟踪控制和障碍物避碰的文档复现该算法包含Matlab编写的非线性模型预测控制Nonlinear model predictive control

QxcEUbsSoxZIP基于非线性模型预测控制的无人船无人艇的轨.zip  736.97KB

资源文件列表:

ZIP 基于非线性模型预测控制的无人船无人艇的轨.zip 大约有16个文件
  1. 1.jpg 120.33KB
  2. 2.jpg 264.32KB
  3. 3.jpg 63.27KB
  4. 4.jpg 86.36KB
  5. 5.jpg 67.32KB
  6. 6.jpg 77.61KB
  7. 7.jpg 79.03KB
  8. 8.jpg 46.52KB
  9. 基于非线性模型预测控制的无人.html 5.59KB
  10. 基于非线性模型预测控制的无人船.doc 1.94KB
  11. 基于非线性模型预测控制的无人船无.txt 322B
  12. 基于非线性模型预测控制的无人船无人艇轨.txt 1.63KB
  13. 基于非线性模型预测控制的无人船轨迹跟.txt 2.75KB
  14. 基于非线性模型预测控制的无人船轨迹跟踪.txt 2.25KB
  15. 基于非线性模型预测控制的无人船轨迹跟踪与障碍物.txt 2.7KB
  16. 基于非线性模型预测控制的无人船轨迹跟踪与障碍物避碰.txt 2.2KB

资源介绍:

基于非线性模型预测控制NMPC的无人船,无人艇的轨迹跟踪控制和障碍物避碰的文档复现 该算法包含Matlab编写的非线性模型预测控制Nonlinear model predictive control 的无人船轨迹跟踪和障碍物避碰算法trajectory tracking and collision avoidance 80 有详细的注释和参考文献。 附使用说明。

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213514/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213514/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">基于非线性模型预测控制<span class="_ _0"> </span></span>NMPC<span class="_ _1"> </span><span class="ff2">的无人船轨迹跟踪与障碍物避碰技术分析</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">随着科技的飞速发展<span class="ff4">,</span>无人船<span class="ff3">、</span>无人艇等智能水下交通工具在海洋工程<span class="ff3">、</span>环境监测等领域发挥着越来</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">越重要的作用<span class="ff3">。</span>本文将围绕非线性模型预测控制<span class="_ _0"> </span><span class="ff1">NMPC<span class="_ _1"> </span></span>在无人船轨迹跟踪与障碍物避碰方面的应用进</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">行深入的技术分析<span class="ff3">。</span></div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>非线性模型预测控制<span class="_ _0"> </span><span class="ff1">NMPC<span class="_ _1"> </span></span>简介</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">非线性模型预测控制是一种基于预测误差反馈的优化控制方法<span class="ff4">,</span>旨在通过预测未来系统状态来优化控</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">制输入<span class="ff4">,</span>以实现系统性能的最优<span class="ff3">。</span>在无人船轨迹跟踪与障碍物避碰领域<span class="ff4">,</span>非线性模型预测控制<span class="_ _0"> </span><span class="ff1">NMPC</span></div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">具有显著的优势<span class="ff3">。</span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>无人船轨迹跟踪控制技术复现</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">技术概述</span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">在本次技术复现中<span class="ff4">,</span>我们详细介绍了基于非线性模型预测控制的无人船轨迹跟踪算法<span class="ff3">。</span>该算法利用先</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">进的非线性模型预测控制理论<span class="ff4">,</span>实现了对无人船轨迹的高精度跟踪<span class="ff3">。</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff2">算法实现细节</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">我们使用<span class="_ _0"> </span><span class="ff1">Matlab<span class="_ _1"> </span></span>编写了非线性模型预测控制算法<span class="ff4">,</span>通过数值模拟和实验验证了算法的有效性和稳定</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">性<span class="ff3">。</span>算法的主要步骤包括状态估计<span class="ff3">、</span>预测和控制输入计算等<span class="ff3">。</span>其中<span class="ff4">,</span>状态估计采用了先进的卡尔曼滤</div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">波技术<span class="ff4">,</span>以提高估计精度和稳定性<span class="ff3">。</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff2">技术特点</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">该算法具有高度的灵活性和可扩展性<span class="ff4">,</span>能够适应不同的环境条件和无人船性能要求<span class="ff3">。</span>同时<span class="ff4">,</span>该算法具</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">有较高的跟踪精度和稳定性<span class="ff4">,</span>能够满足实际应用需求<span class="ff3">。</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、</span>障碍物避碰算法复现</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">技术概述</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">本次技术复现中<span class="ff4">,</span>我们还详细介绍了基于非线性模型预测控制的无人艇障碍物避碰算法<span class="ff3">。</span>该算法利用</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">先进的避障算法和传感器信息<span class="ff4">,</span>实现了对周围障碍物的实时感知和避碰<span class="ff3">。</span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff2">算法实现细节</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha