电路PPT(缺第五章).zip
资源内容介绍
电路PPT(缺第五章).zip <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213310/3/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213310/bg1.jpg"/><div class="c x0 y1 w2 h0"><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">4.<span class="fc4 sc1">1</span><span class="_ _0"></span><span class="fc4 sc1"> </span><span class="_ _1"></span><span class="ff2">正弦量<span class="_ _0"></span>的基本概念</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">4.2<span class="fc4 sc1"> </span><span class="ff2">正弦量<span class="_ _0"></span>的相量表示</span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">4.3<span class="fc4 sc1"> </span><span class="ff2">基尔霍<span class="_ _0"></span>夫定律的相量形式</span></div><div class="t m0 x2 h3 y5 ff1 fs1 fc0 sc0 ls0 ws0">4.7<span class="fc4 sc1"> </span><span class="ff2">正弦电路的功率</span></div><div class="t m0 x3 h4 y6 ff3 fs2 fc1 sc1 ls0 ws0"> <span class="ff4 fc2">本章介绍电压、电流随时间按<span class="_ _0"></span>正弦规律变化的电路即正弦电路,</span></div><div class="t m0 x3 h5 y7 ff4 fs3 fc2 sc1 ls0 ws0">这是一类在理<span class="_ _0"></span>论上和工程上具有重要<span class="_ _0"></span>意义的电路。主要内容包括:<span class="_ _0"></span>正弦量</div><div class="t m0 x3 h5 y8 ff4 fs3 fc2 sc1 ls0 ws0">的<span class="fc3">相量表示<span class="_ _0"></span></span>、元件方程和基尔霍<span class="_ _0"></span>夫定律的相量形式、阻抗和<span class="_ _0"></span>导纳的概念、</div><div class="t m0 x3 h5 y9 ff4 fs3 fc2 sc1 ls0 ws0">电路方程和电<span class="_ _0"></span>路定理的<span class="fc3">相<span class="_ _0"></span>量形式</span>、正弦电流<span class="_ _0"></span>电路功率的<span class="_ _0"></span>特点及计算<span class="_ _0"></span>方法。</div><div class="t m0 x3 h5 ya ff3 fs3 fc1 sc1 ls0 ws0"> </div><div class="t m0 x4 h6 yb ff2 fs4 fc3 sc2 ls0 ws0">本章目次</div><div class="t m0 x5 h7 yc ff2 fs5 fc3 sc2 ls0 ws0">第<span class="ff5 sc1">4</span>章<span class="_ _0"></span><span class="ff5 sc1"> <span class="_ _1"></span><span class="ff2 sc2">正弦稳态交<span class="_ _0"></span>流电路(复习)</span></span></div><div class="t m0 x2 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">4.6<span class="_ _2"> </span><span class="ff2">正弦电<span class="_ _0"></span>路的相量分析法</span></div><div class="t m0 x2 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">4.5<span class="_ _2"> </span><span class="ff2">复阻抗<span class="_ _0"></span>和复导纳</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">4.4<span class="fc4 sc1"> </span><span class="ff2">电路元件伏安关系的相量形式</span></div><div class="t m0 x6 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">4.8<span class="fc4 sc1"> </span><span class="ff2">最大功率传输</span></div></div><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a><a class="l"><div class="d m1"></div></a></div><div class="pi" data-data='{"ctm":[1.333333,0.000000,0.000000,1.333333,0.000000,0.000000]}'></div></div><div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213310/bg2.jpg"><div class="c x0 y1 w2 h0"><div class="t m0 x7 h8 y11 ff2 fs4 fc5 sc3 ls1 ws0">知识点<span class="ff6 sc1 ls2">1:</span><span class="ls0">正弦电压和<span class="_ _1"></span>电流的相量表<span class="_ _1"></span>示</span></div><div class="t m0 x8 h9 y12 ff2 fs0 fc5 sc3 ls0 ws0">在正弦<span class="_ _0"></span>稳态电路中,如激励为同频正弦量<span class="ff6 sc1">,</span><span class="ls3">则各电压、电流都是</span></div><div class="t m0 x8 h2 y13 ff2 fs0 fc5 sc3 ls1 ws0">与激励<span class="fc3 sc2 ls3">同频率</span><span class="ls0">的正弦量。</span></div><div class="t m0 x9 h2 y14 ff2 fs0 fc5 sc3 ls0 ws0">所以在<span class="_ _0"></span>同频条件下,只需要两个要素就可以确定各个正弦量。</div></div><div class="c xa y15 w3 ha"><div class="t m2 xb hb y16 ff7 fs6 fc5 sc1 ls0 ws0">(<span class="_ _3"> </span>)<span class="_ _4"> </span>cos(<span class="_ _5"> </span>)<span class="_ _6"> </span>2<span class="_ _7"> </span>cos(<span class="_ _5"> </span>)</div><div class="t m2 xc hc y17 ff8 fs7 fc5 sc1 ls0 ws0">m</div><div class="t m2 xd hd y18 ff8 fs6 fc5 sc1 ls0 ws0">u<span class="_ _8"> </span>t<span class="_ _9"> </span>U<span class="_ _a"> </span>t<span class="_ _b"> </span>U<span class="_ _c"> </span>t</div><div class="t m3 xe he y19 ff9 fs8 fc5 sc1 ls0 ws0"><span class="_ _d"> </span><span class="_ _e"> </span><span class="_ _d"> </span></div><div class="t m2 xf hf y1a ff9 fs6 fc5 sc1 ls0 ws0">=<span class="_ _f"> </span>+<span class="_ _10"> </span>=<span class="_ _11"> </span>+</div></div><div class="c x0 y1 w2 h0"><div class="t m0 x10 h2 y1b ff2 fs0 fc6 sc4 ls0 ws0">如</div></div><div class="c x11 y1c w4 h10"><div class="t m4 x12 h11 y1d ff7 fs9 fc5 sc1 ls0 ws0">j</div><div class="t m4 x13 h12 y1e ff7 fsa fc5 sc1 ls0 ws0">e</div><div class="t m4 x14 h13 y1f ff8 fs9 fc5 sc1 ls0 ws0">m</div><div class="t m4 x15 h14 y20 ff8 fsa fc5 sc1 ls0 ws0">U</div><div class="t m5 x16 h15 y21 ff9 fsb fc5 sc1 ls0 ws0"></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x17 h2 y22 ff2 fs0 fc5 sc3 ls0 ws0">或</div></div><div class="c x18 y23 w5 h16"><div class="t m6 x15 h17 y24 ff8 fsc fc5 sc1 ls4 ws0">UU</div><div class="t m7 x19 h18 y24 ff9 fsd fc5 sc1 ls0 ws0"></div><div class="t m6 x1a h19 y25 ff9 fse fc5 sc1 ls0 ws0">•</div><div class="t m6 x1b h1a y24 ff9 fsc fc5 sc1 ls5 ws0">=</div></div><div class="c x1c y1c w6 h1b"><div class="t m8 x1d h1c y26 ff8 fsf fc5 sc1 ls0 ws0">m</div><div class="t m8 x15 h1d y27 ff8 fs10 fc5 sc1 ls0 ws0">U</div><div class="t m8 x1a h1e y28 ff9 fsf fc5 sc1 ls0 ws0">•</div><div class="t m8 x1e h1f y29 ff9 fs10 fc5 sc1 ls0 ws0">=</div></div><div class="c x1f y2a w7 h20"><div class="t m9 x1e h21 y2b ff8 fs11 fc5 sc1 ls0 ws0">m</div><div class="t m9 x1d h22 y2c ff8 fs12 fc5 sc1 ls0 ws0">U</div><div class="t ma x20 h23 y2d ff9 fs13 fc5 sc1 ls0 ws0"></div><div class="t m9 xd h24 y2e ff9 fs12 fc5 sc1 ls6 ws0">=</div></div><div class="c x21 y2f w8 h25"><div class="t mb x21 h26 y30 ff7 fs14 fc5 sc1 ls0 ws0">2</div><div class="t mb x1d h27 y31 ff8 fs15 fc5 sc1 ls0 ws0">m</div><div class="t mb x15 h28 y32 ff8 fs14 fc5 sc1 ls7 ws0">UU</div><div class="t mb x1a h29 y33 ff9 fs15 fc5 sc1 ls8 ws0">••</div><div class="t mb x1e h2a y34 ff9 fs14 fc5 sc1 ls0 ws0">=</div></div><div class="c x0 y1 w2 h0"><div class="t m0 x22 h2b y35 ff2 fs1 fc3 sc2 ls0 ws0">注:仅<span class="_ _0"></span>对应<span class="ff6 sc1"> <span class="_ _1"></span>(<span class="ff2 sc2 ls1">代表</span>)<span class="ff2 sc2 ls9">正弦电压或电流的复数称为相量,并不</span></span></div><div class="t m0 x22 h2 y36 ff2 fs0 fc3 sc2 ls0 ws0">是所有<span class="_ _0"></span>的复数都可称为相量,为以示区别相<span class="_ _0"></span>量标识顶部加</div><div class="t m0 x22 h2 y37 ff2 fs0 fc3 sc2 lsa ws0">点。</div><div class="t m0 x5 h2 y38 ff2 fs0 fc5 sc3 ls0 ws0">最大值<span class="_ _0"></span>相量</div><div class="t m0 x23 h3 y39 ff2 fs1 fc5 sc3 ls0 ws0">正弦量幅值</div><div class="t m0 x24 h2 y3a ff2 fs0 fc5 sc3 ls0 ws0">正弦量<span class="_ _0"></span>初相</div></div></div><div class="pi" data-data='{"ctm":[1.333333,0.000000,0.000000,1.333333,0.000000,0.000000]}'></div></div><div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213310/bg3.jpg"><div class="c x0 y1 w2 h0"><div class="t m0 x3 h2c y3b ff2 fs16 fc7 sc5 ls0 ws0">①相量只<span class="_ _0"></span>是对应正弦量(电压或电流),而不等于正弦量。</div><div class="t m0 x25 h3 y3c ff2 fs1 fc3 sc2 lsb ws0">注意<span class="ff1 ls0">:</span></div></div><div class="c x26 y3d w9 h2d"><div class="t mc x20 h2e y3e ff7 fs17 fc5 sc1 ls0 ws0">c<span class="_ _1"></span>os<span class="_ _12"></span><span class="ff9 lsc">=+</span></div><div class="t mc x27 h2f y3f ff6 fs18 fc5 sc1 ls0 ws0">m</div><div class="t mc x28 h30 y40 ff6 fs17 fc5 sc1 lsd ws0">()<span class="_ _13"></span><span class="ff8 lse">iI<span class="_ _14"> </span><span class="ffa ls0">ω<span class="_ _15"> </span><span class="ff8">t<span class="_ _16"> </span></span>ψ</span></span></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x29 h31 y41 ffb fs19 fc3 sc1 ls0 ws0">?</div><div class="t m0 x4 h32 y42 ff6 fs1a fc5 sc1 ls0 ws0">=</div><div class="t m0 x22 h2c y43 ff2 fs16 fc7 sc5 ls0 ws0">②只有对<span class="_ _0"></span>应正弦电压电流的复数才称为相量,并非</div><div class="t m0 x22 h33 y44 ff2 fs1b fc7 sc5 ls0 ws0">所有复<span class="_ _0"></span>数都是相量,<span class="_ _0"></span>为以示区别相量标<span class="_ _0"></span>识顶部加点。</div><div class="t m0 x1d h2c y45 ff2 fs16 fc3 sc2 ls0 ws0">③应用相<span class="_ _0"></span>量分析电路只能计算正弦电压及电流的幅值</div><div class="t m0 x1d h33 y46 ff2 fs1b fc3 sc2 ls0 ws0">(或有<span class="_ _0"></span>效值)和初<span class="_ _0"></span>相。因而相量<span class="_ _0"></span>分析只适用于<span class="_ _0"></span>同频正弦</div><div class="t m0 x1d h33 y47 ff2 fs1b fc3 sc2 ls0 ws0">电路(<span class="_ _0"></span>频率已知)<span class="_ _0"></span><span class="ff1"> <span class="_ _1"></span><span class="ff2">,即电路<span class="_ _0"></span>中的电压和电流都是同<span class="_ _0"></span>频</span></span></div><div class="t m0 x1d h33 y48 ff2 fs1b fc3 sc2 ls0 ws0">正弦量<span class="_ _0"></span>。把对应不<span class="_ _0"></span>同频率正弦量<span class="_ _0"></span>的相量相加减<span class="_ _0"></span>无意义。</div></div><div class="c x2a y49 wa h34"><div class="t md x2b h35 y4a ffa fs1c fc5 sc1 ls0 ws0">ψ<span class="_ _17"></span><span class="ff8">I<span class="_ _18"></span>e<span class="_ _19"></span>I</span></div><div class="t md x2c h36 y4b ffa fs1d fc5 sc1 ls0 ws0">ψ</div><div class="t md x2d h37 y4c ff6 fs1d fc5 sc1 ls0 ws0">m</div><div class="t md x19 h37 y4b ff6 fs1d fc5 sc1 ls0 ws0">j</div><div class="t md x2e h37 y4c ff6 fs1d fc5 sc1 ls0 ws0">m</div><div class="t md x2f h38 y4a ff9 fs1c fc5 sc3 ls0 ws0">=<span class="_ _1a"></span>=</div></div></div><div class="pi" data-data='{"ctm":[1.333333,0.000000,0.000000,1.333333,0.000000,0.000000]}'></div></div><div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213310/bg4.jpg"><div class="c x25 y4d wb h39"><div class="t me x30 h3a y4e ff6 fs1e fc5 sc1 ls0 ws0">V<span class="_ _1b"></span><span class="lsf">45</span></div><div class="t me x2c h3a y4f ff6 fs1e fc5 sc1 ls0 ws0">2</div><div class="t me x31 h3a y50 ff6 fs1e fc5 sc1 ls0 ws0">2<span class="_ _0"></span>2<span class="_ _1c"></span>0</div><div class="t me x32 h3b y51 ff9 fs1e fc5 sc3 ls0 ws0"><span class="_ _1d"></span>=<span class="_ _1e"></span><span class="ff8 sc1">U</span></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x11 h3c y52 ffb fs1f fc3 sc1 ls0 ws0">?</div><div class="t m0 x33 h3d y53 ff2 fs1a fc3 sc2 ls1 ws0">正误判断</div><div class="t m0 x34 h2c y54 ff1 fs16 fc7 sc5 ls10 ws0">1<span class="fc4 sc1">.</span><span class="ff2 lsb">已知:</span></div></div><div class="c x35 y55 wc h3e"><div class="t mf x36 h3f y56 ff9 fs20 fc5 sc1 ls0 ws0">=<span class="_ _1f"> </span>+<span class="_ _6"> </span><span class="_ _20"></span><span class="ff6">220<span class="_ _21"> </span>c<span class="_ _1"></span>os<span class="_ _22"></span>(<span class="_ _23"> </span>45<span class="_ _24"> </span>)V<span class="_ _25"></span><span class="ff8">u<span class="_ _26"> </span><span class="ffa">ω<span class="_ _27"> </span></span>t</span></span></div></div><div class="c x13 y57 wd h40"><div class="t m10 x37 h41 y58 ff6 fs21 fc5 sc1 ls0 ws0">V<span class="_ _28"></span>e<span class="_ _29"></span>2<span class="_ _0"></span>2<span class="_ _0"></span>0</div><div class="t m10 x38 h42 y59 ff6 fs22 fc5 sc1 ls0 ws0">45</div><div class="t m10 x1b h42 y5a ff6 fs22 fc5 sc1 ls0 ws0">m</div><div class="t m10 x30 h43 y5b ff9 fs22 fc5 sc3 ls0 ws0"></div><div class="t m10 x39 h44 y5c ff9 fs21 fc5 sc3 ls0 ws0">=<span class="_ _2a"></span><span class="ff8 sc1">U</span></div><div class="t m10 x3a h45 y5d ffc fs21 fc5 sc1 ls0 ws0"></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x3b h3c y5e ffb fs1f fc3 sc1 ls0 ws0">?</div><div class="t m0 x3c h3 y5f ff2 fs1 fc3 sc2 lsb ws0">有效值</div></div><div class="c x3d y60 we h46"><div class="t m11 x3e h47 y61 ff7 fs23 fc5 sc1 ls0 ws0">c<span class="_ _1"></span>os<span class="_ _2b"></span><span class="ff9">=<span class="_ _2c"> </span>+<span class="_ _14"> </span><span class="_ _2d"></span><span class="ff6">4<span class="_ _2e"> </span>2<span class="_ _2f"> </span>(<span class="_ _30"> </span>30<span class="_ _31"> </span>)A<span class="_ _32"></span><span class="ffa">ω<span class="_ _3"> </span><span class="ff8">t</span></span></span></span></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x3f h48 y62 ffb fs1a fc3 sc2 ls0 ws0">?</div></div><div class="c x40 y63 wf h49"><div class="t m12 x41 h4a y64 ff6 fs24 fc5 sc1 ls0 ws0">A<span class="_ _33"></span>e<span class="_ _34"></span>4</div><div class="t m12 x42 h4b y65 ff6 fs25 fc5 sc1 ls0 ws0">j<span class="_ _35"></span>30<span class="_ _36"></span><span class="ff9 sc3"></span></div><div class="t m12 x13 h4c y66 ff9 fs24 fc5 sc3 ls0 ws0">=<span class="_ _37"></span><span class="ff8 sc1">I</span></div><div class="t m12 x43 h4d y67 ffc fs24 fc5 sc1 ls0 ws0"></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x40 h2c y68 ff1 fs16 fc7 sc5 ls11 ws0">3<span class="fc4 sc1">.</span><span class="ff2 lsb">已知:</span></div><div class="t m0 x44 h4e y69 ffb fs0 fc3 sc2 ls1 ws0">复数</div><div class="t m0 x45 h2 y6a ff2 fs0 fc3 sc2 lsa ws0">瞬时值</div><div class="t m0 x46 h9 y6b ff6 fs0 fc3 sc1 ls0 ws0">j45<span class="ff9 sc2"></span></div></div><div class="c x39 y6c w10 h4f"><div class="t m13 x47 h50 y6d ff6 fs26 fc5 sc1 ls12 ws0">)A<span class="_ _38"></span><span class="ls13">60<span class="_ _39"></span><span class="ls0">(<span class="_ _3a"></span>s<span class="_ _3b"></span>i<span class="_ _1c"></span>n<span class="_ _3c"></span><span class="ls13">10<span class="_ _3d"> </span><span class="ff9 ls0"><span class="_ _3e"></span>+<span class="_ _3f"></span>=<span class="_ _40"> </span><span class="ff8">t<span class="_ _34"></span><span class="ffa">ω<span class="_ _41"></span><span class="ff8">i</span></span></span></span></span></span></span></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x48 h51 y6e ffb fs27 fc3 sc2 ls0 ws0">?</div><div class="t m0 x49 h2 y6f ff2 fs0 fc3 sc2 ls1 ws0">最大值<span class="ff1 ls14">10</span></div></div><div class="c x4a y70 w11 h52"><div class="t m14 x4b h53 y71 ff6 fs28 fc5 sc1 ls0 ws0">V<span class="_ _42"></span>1<span class="_ _0"></span>0<span class="_ _0"></span>0<span class="_ _43"></span><span class="ff9 sc3">=<span class="_ _44"></span><span class="ff8 sc1">U</span></span></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x4c h54 y72 ffb fs29 fc3 sc2 ls0 ws0"><span class="fc4 sc1">?</span></div></div><div class="c x4d y73 w12 h55"><div class="t m15 x4e h56 y74 ff6 fs2a fc5 sc1 ls0 ws0">V<span class="_ _45"></span>e<span class="_ _46"></span><span class="ls15">100</span></div><div class="t m15 x4f h57 y75 ff6 fs2b fc5 sc1 ls0 ws0">j<span class="_ _35"></span>1<span class="_ _0"></span>5</div><div class="t m15 x50 h58 y76 ffc fs2c fc5 sc1 ls0 ws0"></div><div class="t m15 x3a h59 y77 ffc fs2a fc5 sc1 ls0 ws0"></div><div class="t m15 x51 h5a y74 ff9 fs2a fc5 sc3 ls0 ws0">=<span class="_ _47"></span><span class="ff8 sc1">U</span></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x52 h51 y78 ffb fs27 fc3 sc2 ls0 ws0">?</div><div class="t m0 x53 h5b y79 ff9 fs2d fc3 sc2 ls0 ws0"></div><div class="t m0 x54 h3 y7a ff2 fs1 fc3 sc2 lsb ws0">负号</div><div class="t m0 x1e h33 y7b ff1 fs1b fc7 sc5 ls16 ws0">2.<span class="ff2 ls1">已知:</span></div></div><div class="c x55 y7c w13 h5c"><div class="t m16 xa h5d y7d ff6 fs2e fc5 sc1 ls0 ws0">A<span class="_ _2a"></span><span class="ls17">60<span class="_ _48"></span>10<span class="_ _49"> </span><span class="ff9 sc3 ls0"><span class="_ _39"></span>=<span class="_ _34"></span><span class="ff8 sc1">I</span></span></span></div><div class="t m16 x56 h5e y7e ffc fs2e fc5 sc1 ls0 ws0"></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x57 h33 y7f ff1 fs1b fc8 sc6 ls16 ws0">4<span class="fc4 sc1">.</span><span class="ff2 lsa">已知:</span></div></div><div class="c x58 y80 w14 h1b"><div class="t m17 x59 h5f y81 ff6 fs2f fc5 sc1 ls0 ws0">V<span class="_ _4a"></span><span class="ls18">15<span class="_ _4b"></span><span class="ls0">1<span class="_ _0"></span>00<span class="_ _4c"> </span><span class="ff9 sc3"><span class="_ _4d"></span>−<span class="_ _4e"></span>=<span class="_ _4f"></span><span class="ff8 sc1">U</span></span></span></span></div><div class="t m17 x5a h60 y82 ffc fs2f fc5 sc1 ls0 ws0"></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x5b h9 y83 ff6 fs0 fc3 sc1 ls0 ws0">cos</div><div class="t m0 x5c h61 y84 ffd fs30 fc3 sc1 ls0 ws0">𝟐</div></div></div><div class="pi" data-data='{"ctm":[1.333333,0.000000,0.000000,1.333333,0.000000,0.000000]}'></div></div><div id="pf5" class="pf w0 h0" data-page-no="5"><div class="pc pc5 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213310/bg5.jpg"><div class="c x0 y1 w2 h0"><div class="t m0 x5d h62 y85 ff6 fs31 fc5 sc1 ls0 ws0">Fundamentals of Electric <span class="_ _3b"></span>Circuits Harbin <span class="_ _3b"></span>Engineeri<span class="_ _0"></span>ng <span class="_ _3b"></span>Universi<span class="_ _0"></span>ty <span class="_ _3b"></span>20<span class="_ _0"></span>21</div><div class="t m0 x14 h2 y86 ff2 fs0 fc5 sc3 ls0 ws0">在集中<span class="_ _0"></span>参数电路中,任一时刻流出(或流入)任一节点的电流</div><div class="t m0 x14 h2 y87 ff2 fs0 fc5 sc3 ls0 ws0">代数和<span class="_ _0"></span>等于零。其时域表示为</div><div class="t m0 x5e h2 y88 ff2 fs0 fc5 sc3 ls0 ws0">当方程<span class="_ _0"></span>中各电流均为同频率的正弦量时,它们对应的相量满足</div><div class="t m0 x5e h3 y89 ff2 fs1 fc5 sc3 ls0 ws0">基尔霍夫电流定律方程的相量形式。<span class="ff1"> </span></div></div><div class="c x5f y8a w15 h63"><div class="t m18 x60 h64 y8b ff7 fs32 fc5 sc1 ls0 ws0"><span class="fc4 sc1">0</span><span class="_ _50"></span><span class="ff8"><span class="fc4 sc1">i</span></span></div></div><div class="c x61 y8c w16 h65"><div class="t m19 x62 h66 y8d ff7 fs33 fc5 sc1 ls19 ws0"><span class="fc4 sc1">=0</span></div><div class="t m19 x25 h67 y8e ff8 fs34 fc5 sc1 ls0 ws0"><span class="fc4 sc1">m</span></div><div class="t m19 x7 h68 y8f ff8 fs33 fc5 sc1 ls0 ws0"><span class="fc4 sc1">I</span></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x63 h2 y90 ff2 fs0 fc5 sc3 ls0 ws0">或</div></div><div class="c x64 y91 w17 h63"><div class="t m1a x1 h64 y92 ff7 fs32 fc5 sc1 ls1a ws0"><span class="fc4 sc1">=0</span><span class="_ _51"></span><span class="ff8 ls0"><span class="fc4 sc1">I</span></span></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x42 h2 y93 ff2 fs0 fc5 sc3 ls1 ws0">最大值<span class="ff1 ls0"> <span class="_ _3b"></span><span class="ff2">相<span class="_ _0"></span><span class="ff1"> </span>量</span></span></div><div class="t m0 x65 h2 y94 ff2 fs0 fc5 sc3 ls0 ws0">有<span class="ff1"> </span>效<span class="ff1"> </span>值<span class="ff1"> </span>相<span class="ff1"> </span>量</div><div class="t m0 x22 h8 y95 ff2 fs4 fc5 sc3 ls1 ws0">知识点<span class="ff6 sc1 ls0">2</span><span class="ls0">:基尔<span class="_ _1"></span>霍夫定律的相<span class="_ _1"></span>量形式</span></div><div class="t m0 x14 h69 y96 ff2 fs1b fc5 sc3 ls0 ws0">(<span class="ff6 sc1">1</span>)<span class="_ _0"></span>基尔霍夫电流定<span class="_ _0"></span>律方程的相量形式</div></div><div class="c x66 y97 w18 h6a"><div class="t m1b x67 h6b y98 ff7 fs35 fc3 sc1 ls0 ws0"><span class="fc4 sc1">0</span><span class="_ _52"></span><span class="ff8"><span class="fc4 sc1">I</span></span></div></div><div class="c x0 y1 w2 h0"><div class="t m0 x68 h3d y99 ff2 fs1a fc3 sc2 ls0 ws0">但</div></div></div><div class="pi" data-data='{"ctm":[1.333333,0.000000,0.000000,1.333333,0.000000,0.000000]}'></div></div>