自动泊车最优路径代码matlab,使用rrt算法寻找路径加reeds曲线泊车入库,调用maplayer处理场景

HTNGnwkCZIP自动泊车最优路径代码使用算法寻找路径加曲线泊车.zip  595.34KB

资源文件列表:

ZIP 自动泊车最优路径代码使用算法寻找路径加曲线泊车.zip 大约有9个文件
  1. 1.jpg 587.11KB
  2. 自动泊车最优路径代.html 4.14KB
  3. 自动泊车最优路径代码使用算.txt 137B
  4. 自动泊车最优路径代码实现算法与.txt 2.03KB
  5. 自动泊车最优路径代码实现算法与曲.txt 2.17KB
  6. 自动泊车最优路径代码实现算法与曲线泊车入库.txt 1.9KB
  7. 自动泊车最优路径代码实现算法与曲线泊车入库一.doc 1.94KB
  8. 自动泊车最优路径代码实现算法与曲线泊车入库场景处理.txt 2.16KB
  9. 自动泊车系统基于算法与曲线的最优路径规划代码.txt 2.05KB

资源介绍:

自动泊车最优路径代码matlab,使用rrt算法寻找路径加reeds曲线泊车入库,调用maplayer处理场景。

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213082/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213082/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">自动泊车最优路径代码<span class="_ _0"> </span></span>Matlab<span class="_ _1"> </span><span class="ff2">实现<span class="ff3">:</span></span>RRT<span class="_ _1"> </span><span class="ff2">算法与<span class="_ _0"> </span></span>Reeds<span class="_ _1"> </span><span class="ff2">曲线泊车入库</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>背景与目的</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">随着自动驾驶技术的不断发展<span class="ff3">,</span>自动泊车技术成为研究的热点<span class="ff4">。</span>本文将围绕自动泊车过程中如何使用</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">Matlab<span class="_ _1"> </span><span class="ff2">实现最优路径算法<span class="ff3">,</span>结合<span class="_ _0"> </span></span>RRT<span class="ff3">(<span class="ff2">随机游走树</span>)<span class="ff2">算法和<span class="_ _0"> </span></span></span>Reeds<span class="_ _1"> </span><span class="ff2">曲线泊车入库场景处理<span class="ff3">,</span>以展示</span></div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">其在复杂环境下的实际应用<span class="ff4">。</span></div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>技术分析</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">自动泊车技术概述</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">自动泊车技术是利用车辆传感器<span class="ff4">、</span>控制系统和计算机视觉等技术<span class="ff3">,</span>实现车辆在各种复杂环境下的自动</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">泊入和泊出<span class="ff4">。</span>其中<span class="ff3">,</span>最优路径算法是关键<span class="ff3">,</span>它决定了车辆在泊车过程中的行驶轨迹和速度<span class="ff4">。</span></div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>RRT<span class="_ _1"> </span><span class="ff2">算法简介</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">RRT<span class="ff3">(<span class="ff2">随机游走树</span>)<span class="ff2">算法是一种基于概率的启发式搜索算法</span>,<span class="ff2">用于解决路径规划问题<span class="ff4">。</span>在自动泊车场</span></span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">景中<span class="ff3">,<span class="ff1">RRT<span class="_ _1"> </span></span></span>算法可以用于生成车辆在空间中的最优路径<span class="ff4">。</span></div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span>Reeds<span class="_ _1"> </span><span class="ff2">曲线泊车技术</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">Reeds<span class="_ _1"> </span><span class="ff2">曲线是一种基于物理的泊车技术<span class="ff3">,</span>通过在车辆周围绘制复杂的路径曲线<span class="ff3">,</span>实现车辆的精确泊入</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">和泊出<span class="ff4">。</span>在<span class="_ _0"> </span><span class="ff1">Matlab<span class="_ _1"> </span></span>中<span class="ff3">,</span>可以通过调用<span class="_ _0"> </span><span class="ff1">Maplayer<span class="_ _1"> </span></span>等工具处理场景<span class="ff3">,</span>实现<span class="_ _0"> </span><span class="ff1">Reeds<span class="_ _1"> </span></span>曲线的绘制和优化</div><div class="t m0 x1 h3 y10 ff4 fs0 fc0 sc0 ls0 ws0">。</div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、</span>具体实现</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">代码实现概述</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">本案例将详细介绍如何使用<span class="_ _0"> </span><span class="ff1">Matlab<span class="_ _1"> </span></span>实现自动泊车最优路径代码<span class="ff4">。</span>首先<span class="ff3">,</span>需要使用<span class="_ _0"> </span><span class="ff1">RRT<span class="_ _1"> </span></span>算法生成车辆</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">在空间中的最优路径<span class="ff3">;</span>其次<span class="ff3">,</span>调用<span class="_ _0"> </span><span class="ff1">Maplayer<span class="_ _1"> </span></span>处理场景<span class="ff3">,</span>实现<span class="_ _0"> </span><span class="ff1">Reeds<span class="_ _1"> </span></span>曲线的绘制和优化<span class="ff3">;</span>最后<span class="ff3">,</span>调</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">用相应的调用接口或函数<span class="ff3">,</span>完成整个自动泊车过程<span class="ff4">。</span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>RRT<span class="_ _1"> </span><span class="ff2">算法应用实例</span></div><div class="t m0 x1 h2 y17 ff3 fs0 fc0 sc0 ls0 ws0">(<span class="ff1">1</span>)<span class="ff2">参数设置与初始化</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">在<span class="_ _0"> </span><span class="ff1">Matlab<span class="_ _1"> </span></span>中<span class="ff3">,</span>需要设置<span class="_ _0"> </span><span class="ff1">RRT<span class="_ _1"> </span></span>算法的相关参数<span class="ff3">,</span>包括树的根节点<span class="ff4">、</span>搜索空间<span class="ff4">、</span>生成概率等<span class="ff4">。</span>同时<span class="ff3">,</span>需</div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">要初始化车辆的位置<span class="ff4">、</span>速度等信息<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha