自动驾驶控制-基于MPC的速度控制仿真matlab和simulink联合仿真,基于mpc算法的速度控制,跟踪阶跃形式的速度和正弦形式的速度
资源内容介绍
自动驾驶控制-基于MPC的速度控制仿真matlab和simulink联合仿真,基于mpc算法的速度控制,跟踪阶跃形式的速度和正弦形式的速度。 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90241007/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90241007/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">自动驾驶控制<span class="ff3">:</span>基于<span class="_ _0"> </span></span>MPC<span class="_ _1"> </span><span class="ff2">的速度控制仿真</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">随着自动驾驶技术的飞速发展<span class="ff3">,</span>如何实现精确<span class="ff4">、</span>高效的速度控制成为了关键技术之一<span class="ff4">。</span>模型预测控制</div><div class="t m0 x1 h2 y4 ff3 fs0 fc0 sc0 ls0 ws0">(<span class="ff1">MPC</span>)<span class="ff2">作为现代控制策略之一</span>,<span class="ff2">具有对复杂非线性系统的强大控制能力</span>,<span class="ff2">特别是在速度控制和路径</span></div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">跟踪上展现出明显优势<span class="ff4">。</span>本文将重点讨论如何利用<span class="_ _0"> </span><span class="ff1">MPC<span class="_ _1"> </span></span>算法进行速度控制仿真<span class="ff3">,</span>并使用<span class="_ _0"> </span><span class="ff1">MATLAB<span class="_ _1"> </span></span>和</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">Simulink<span class="_ _1"> </span><span class="ff2">进行联合仿真<span class="ff3">,</span>实现对阶跃和正弦形式的速度跟踪<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、<span class="ff1">MPC<span class="_ _1"> </span></span></span>算法简介</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">模型预测控制<span class="ff3">(<span class="ff1">MPC</span>)</span>是一种基于模型的优化控制算法<span class="ff4">。</span>它通过建立预测模型<span class="ff3">,</span>对未来一段时间内的</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">系统行为进行预测<span class="ff3">,</span>并基于预测结果进行优化决策<span class="ff3">,</span>以实现期望的控制目标<span class="ff4">。<span class="ff1">MPC<span class="_ _1"> </span></span></span>算法可以处理多变</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">量<span class="ff4">、</span>多约束的复杂系统<span class="ff3">,</span>特别适合于自动驾驶等高精度控制需求<span class="ff4">。</span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、</span>速度控制的<span class="_ _0"> </span><span class="ff1">MPC<span class="_ _1"> </span></span>算法设计</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">在自动驾驶系统中<span class="ff3">,</span>速度控制是关键的一环<span class="ff4">。</span>基于<span class="_ _0"> </span><span class="ff1">MPC<span class="_ _1"> </span></span>算法的速度控制策略<span class="ff3">,</span>通过设定期望速度和当</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">前速度的差值作为输入<span class="ff3">,</span>结合车辆动力学模型和路况信息<span class="ff3">,</span>进行未来的速度预测和优化决策<span class="ff4">。<span class="ff1">MPC<span class="_ _1"> </span></span></span>算</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">法可以综合考虑多种因素<span class="ff3">,</span>如道路曲率<span class="ff4">、</span>车辆动力学性能<span class="ff4">、</span>外部干扰等<span class="ff3">,</span>实现精确的速度控制<span class="ff4">。</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff4">、<span class="ff1">MATLAB<span class="_ _1"> </span></span></span>和<span class="_ _0"> </span><span class="ff1">Simulink<span class="_ _1"> </span></span>联合仿真</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">MATLAB<span class="_ _1"> </span><span class="ff2">和<span class="_ _0"> </span></span>Simulink<span class="_ _1"> </span><span class="ff2">是进行控制系统仿真和设计的强大工具<span class="ff4">。</span>在本次仿真中<span class="ff3">,</span>我们利用<span class="_ _0"> </span></span>MATLAB<span class="_ _1"> </span><span class="ff2">进</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">行<span class="_ _0"> </span><span class="ff1">MPC<span class="_ _1"> </span></span>算法的编写和调试<span class="ff3">,</span>并通过<span class="_ _0"> </span><span class="ff1">Simulink<span class="_ _1"> </span></span>建立仿真模型<span class="ff4">。</span>通过将<span class="_ _0"> </span><span class="ff1">MPC<span class="_ _1"> </span></span>算法模块与车辆动力学模</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">型<span class="ff4">、</span>传感器模型等模块连接起来<span class="ff3">,</span>形成完整的仿真系统<span class="ff4">。</span>在仿真系统中<span class="ff3">,</span>我们可以设置阶跃形式和正</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">弦形式的速度输入<span class="ff3">,</span>观察和分析<span class="_ _0"> </span><span class="ff1">MPC<span class="_ _1"> </span></span>算法对速度的控制效果<span class="ff4">。</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">五<span class="ff4">、</span>仿真实验及结果分析</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">阶跃形式的速度跟踪</span></div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">在仿真实验中<span class="ff3">,</span>我们设定一个阶跃形式的速度变化<span class="ff3">,</span>观察<span class="_ _0"> </span><span class="ff1">MPC<span class="_ _1"> </span></span>算法对这种速度变化的响应和跟踪能力</div><div class="t m0 x1 h2 y17 ff4 fs0 fc0 sc0 ls0 ws0">。<span class="ff2">通过调整<span class="_ _0"> </span><span class="ff1">MPC<span class="_ _1"> </span></span>算法的参数<span class="ff3">,</span>我们可以得到不同的响应速度和稳定性</span>。<span class="ff2">实验结果表明<span class="ff3">,<span class="ff1">MPC<span class="_ _1"> </span></span></span>算法能够</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">快速响应阶跃变化<span class="ff3">,</span>并实现精确的速度跟踪<span class="ff4">。</span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff2">正弦形式的速度跟踪</span></div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">除了阶跃形式的速度变化<span class="ff3">,</span>我们还模拟了正弦形式的速度变化<span class="ff4">。</span>这种速度变化更接近实际驾驶中的情</div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">况<span class="ff4">。</span>通过仿真实验<span class="ff3">,</span>我们发现<span class="_ _0"> </span><span class="ff1">MPC<span class="_ _1"> </span></span>算法同样能够有效地跟踪正弦形式的速度变化<span class="ff3">,</span>并保持较好的稳定</div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">性和精度<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>