4-小波阈值降噪 wavlet denoisemaatlab2019a及以上实现包含多个小波阈值降噪方法1.自定义阈值对输入信号进行降噪处理2.输入信号获得其推荐阈值类型及阈值大小并降噪3
资源内容介绍
4_小波阈值降噪 wavlet denoisemaatlab2019a及以上实现包含多个小波阈值降噪方法1.自定义阈值对输入信号进行降噪处理2.输入信号获得其推荐阈值类型及阈值大小并降噪3.对输入信号先进行多层小波分解,然后对分解后的细节系数降噪。将降噪后的细节系数及最后一层分解的近似系数重构为新信号,展示降噪前后的细节系数 分解层数等参数可修改有详细介绍并附带注释,保证可以运行附带一份数据,可以查看数据格式来调整你的数据最后使用代码运行 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90240462/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90240462/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">小波阈值降噪<span class="ff2">:<span class="ff3">MATLAB 2019A<span class="_ _0"> </span></span></span>及以上版本的实现与应用</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">在信号处理领域<span class="ff2">,</span>小波阈值降噪是一种常见的降噪方法<span class="ff4">。</span>该方法通过小波变换将信号分解为多个层级</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">然后对每一层的小波系数进行阈值处理</span>,<span class="ff1">从而实现对信号的降噪<span class="ff4">。</span>本文将围绕<span class="_ _1"> </span><span class="ff3">MATLAB 2019A<span class="_ _0"> </span></span>及</span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">以上版本的小波阈值降噪功能展开<span class="ff2">,</span>介绍其实现方法<span class="ff4">、</span>多种降噪策略以及实际应用<span class="ff4">。</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>小波阈值降噪的基本原理</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">小波阈值降噪主要包括三个步骤<span class="ff2">:</span>小波变换<span class="ff4">、</span>阈值处理以及小波重构<span class="ff4">。</span>首先<span class="ff2">,</span>对输入信号进行小波变</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">换<span class="ff2">,</span>将其分解为多层细节系数和一层近似系数<span class="ff4">。</span>然后<span class="ff2">,</span>对每一层的细节系数进行阈值处理<span class="ff2">,</span>最后根据</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">处理后的系数和最后一层的近似系数进行小波重构<span class="ff2">,</span>得到降噪后的信号<span class="ff4">。</span></div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、<span class="ff3">MATLAB<span class="_ _0"> </span></span></span>中的小波阈值降噪实现</div><div class="t m0 x1 h2 yb ff3 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">自定义阈值对输入信号进行降噪处理</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">在<span class="_ _1"> </span><span class="ff3">MATLAB<span class="_ _0"> </span></span>中<span class="ff2">,</span>我们可以使用<span class="ff3">`dwt`</span>函数对信号进行离散小波变换<span class="ff2">,</span>然后根据需要设置阈值对每一层</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">的小波系数进行处理<span class="ff4">。</span>例如<span class="ff2">,</span>我们可以设置一个自定义的阈值<span class="ff2">,</span>对所有大于该阈值的系数进行置零或</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">缩小处理<span class="ff4">。</span></div><div class="t m0 x1 h2 yf ff3 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">输入信号获得其推荐阈值类型及阈值大小并降噪</span></div><div class="t m0 x1 h2 y10 ff3 fs0 fc0 sc0 ls0 ws0">MATLAB<span class="_ _0"> </span><span class="ff1">提供了多种推荐阈值类型<span class="ff2">,</span>如基于斯坦因无偏风险估计</span>(Stein's Unbiased Risk </div><div class="t m0 x1 h2 y11 ff3 fs0 fc0 sc0 ls0 ws0">Estimate, SURE)<span class="ff1">的阈值选择方法<span class="ff4">。</span>我们可以使用</span>`wdenoise`<span class="ff1">函数来自动选择合适的阈值类型和</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">大小进行降噪处理<span class="ff4">。</span></div><div class="t m0 x1 h2 y13 ff3 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff1">对输入信号先进行多层小波分解<span class="ff2">,</span>然后对分解后的细节系数降噪</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">在<span class="_ _1"> </span><span class="ff3">MATLAB<span class="_ _0"> </span></span>中<span class="ff2">,</span>我们可以使用<span class="ff3">`wfilters`</span>函数来获取小波分解的滤波器系数<span class="ff2">,</span>然后使用<span class="ff3">`dwt`</span>函数</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">对信号进行多层小波分解<span class="ff4">。</span>对于每一层的小波系数<span class="ff2">,</span>我们可以根据需要选择不同的阈值处理方法<span class="ff4">。</span>最</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">后<span class="ff2">,</span>使用<span class="ff3">`idwt`</span>函数将处理后的系数进行小波重构<span class="ff2">,</span>得到降噪后的信号<span class="ff4">。</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff4">、</span>实际应用与展示</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">我们可以根据实际需求修改分解层数<span class="ff4">、</span>阈值类型和大小等参数<span class="ff2">,</span>以获得最佳的降噪效果<span class="ff4">。</span>在<span class="_ _1"> </span><span class="ff3">MATLAB</span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">中<span class="ff2">,</span>我们可以方便地查看降噪前后的细节系数<span class="ff4">、</span>分解层数等参数<span class="ff4">。</span>同时<span class="ff2">,</span>我们还可以附带一份数据<span class="ff2">,</span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">以便查看数据格式并调整自己的数据<span class="ff2">,</span>最后使用代码运行进行验证<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>