三相两电平PWM整流器simulink仿真,电压电流双闭环控制,空间矢量调制(svpwm)~~可用于电力电子方向入门学习

rFYcsEXAVftCZIP三相两电平整流.zip  389.79KB

资源文件列表:

ZIP 三相两电平整流.zip 大约有16个文件
  1. 1.jpg 84.46KB
  2. 2.jpg 63.63KB
  3. 3.jpg 41.35KB
  4. 4.jpg 57.39KB
  5. 5.jpg 201.78KB
  6. 6.jpg 58.97KB
  7. 三相两电平整流器仿真之旅初探电压电流.txt 1.97KB
  8. 三相两电平整流器仿真及空间矢量调.html 11.28KB
  9. 三相两电平整流器仿真及空间矢量调制技术应用一引言随.txt 2.09KB
  10. 三相两电平整流器仿真及空间矢量调制技术解析一引.txt 1.75KB
  11. 三相两电平整流器仿真技术深度解析与电力电子应用.txt 2.59KB
  12. 三相两电平整流器仿真电压电流双.html 5.22KB
  13. 三相两电平整流器及其仿真研究一引言在电力电子.txt 1.88KB
  14. 三相两电平整流器的仿真分析与空间矢.txt 2.24KB
  15. 基于数据驱动的模型预测控制在电力系统机组组合优化中.doc 2.77KB
  16. 题目三相两电平整流器的仿真研究摘要本文通过仿真技.doc 2.29KB

资源介绍:

三相两电平PWM整流器simulink仿真,电压电流双闭环控制,空间矢量调制(svpwm)~~可用于电力电子方向入门学习

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90240427/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90240427/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">基于数据驱动的模型预测控制在电力系统机组组合优化中的研究与应用</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">随着电力行业的快速发展<span class="ff4">,</span>电力系统机组的组合优化问题日益凸显其重要性<span class="ff3">。</span>针对这一挑战性问题<span class="ff4">,</span></div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">传统开环模型预测控制方法虽然取得了一定的成效<span class="ff4">,</span>但在处理复杂多变<span class="ff3">、</span>实时性要求高的现代电力系</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">统时<span class="ff4">,</span>其局限性逐渐显现<span class="ff3">。</span>因此<span class="ff4">,</span>本文提出了一种基于数据驱动的模型预测控制方法<span class="ff4">,</span>用于解决电力</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">系统机组组合优化问题<span class="ff3">。</span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>背景知识概述</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">首先<span class="ff4">,</span>让我们了解一下涉及的关键技术<span class="ff3">。</span>数据驱动方法以其强大的自适应能力和学习能力成为现代控</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">制领域的研究热点<span class="ff3">。</span>模型预测控制则是一种先进的控制策略<span class="ff4">,</span>能够在线优化并预测系统未来的状态<span class="ff3">。</span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">而电力系统机组组合问题涉及到电力系统的经济调度和稳定运行<span class="ff4">,</span>是电力系统调度的重要环节<span class="ff3">。</span>针对</div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">这些问题<span class="ff4">,</span>我们采用闭环模型预测控制方法<span class="ff4">,</span>结合样本训练<span class="ff3">、</span>日前调度和实时调度等步骤<span class="ff4">,</span>实现对电</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">力系统机组的优化调度<span class="ff3">。</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>方法论述</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">基于数据驱动的模型预测控制电力系统机组组合优化的核心在于建立高效的闭环控制系统<span class="ff3">。</span>该系统通</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">过收集历史数据<span class="ff4">,</span>利用机器学习算法训练模型<span class="ff4">,</span>实现对电力系统机组的精准预测和控制<span class="ff3">。</span>具体步骤如</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">下<span class="ff4">:</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _0"> </span><span class="ff2">样本训练<span class="ff4">:</span>通过收集电力系统的历史运行数据<span class="ff4">,</span>利用机器学习算法训练模型<span class="ff4">,</span>建立电力负荷与机</span></div><div class="t m0 x2 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">组运行状态之间的映射关系<span class="ff3">。</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _0"> </span><span class="ff2">日前调度<span class="ff4">:</span>基于训练好的模型<span class="ff4">,</span>进行电力系统机组的日前调度<span class="ff3">。</span>通过对未来电力负荷的预测<span class="ff4">,</span>提</span></div><div class="t m0 x2 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">前规划机组的运行状态<span class="ff4">,</span>确保电力供应的稳定性和经济性<span class="ff3">。</span></div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _0"> </span><span class="ff2">实时调度<span class="ff4">:</span>在电力系统运行过程中<span class="ff4">,</span>实时收集系统状态数据<span class="ff4">,</span>利用模型预测控制方法进行实时调</span></div><div class="t m0 x2 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">度<span class="ff4">,</span>确保系统运行的稳定性和经济性<span class="ff3">。</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、</span>创新性分析</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">本代码采用闭环模型预测控制方法<span class="ff4">,</span>相较于传统的开环模型预测控制方法<span class="ff4">,</span>具有更高的创新度和难度</div><div class="t m0 x1 h2 y19 ff3 fs0 fc0 sc0 ls0 ws0">。<span class="ff2">其创新性主要体现在以下几个方面<span class="ff4">:</span></span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _0"> </span><span class="ff2">闭环控制系统<span class="ff4">:</span>通过建立闭环控制系统<span class="ff4">,</span>实现了对电力系统机组的实时预测和控制<span class="ff4">,</span>提高了系统</span></div><div class="t m0 x2 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">的稳定性和经济性<span class="ff3">。</span></div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _0"> </span><span class="ff2">数据驱动方法<span class="ff4">:</span>利用数据驱动方法<span class="ff4">,</span>通过收集历史数据训练模型<span class="ff4">,</span>提高了模型的自适应能力和学</span></div><div class="t m0 x2 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">习能力<span class="ff3">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha