yolov5+csl标签.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)基于yolov5的旋转目标检测_yolov5_obb
大小:6.18MB
价格:15积分
下载量:0
评分:
5.0
上传者:2401_89451588
更新日期:2025-01-08

yolov5+csl标签.(Oriented Object Detection)(Rotation Detection)(Ro

资源文件列表(大概)

文件名
大小
yolov5 + csl_label.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)基于yolov5的旋转目标检测_yolov5_obb/项目内附说明/如果解压失败请用ara软件解压.txt
42B
yolov5_obb-master/Arial.ttf
755.11KB
yolov5_obb-master/CONTRIBUTING.md
4.87KB
yolov5_obb-master/detect.py
12.77KB
yolov5_obb-master/Dockerfile
2.11KB
yolov5_obb-master/export.py
21.26KB
yolov5_obb-master/hubconf.py
6.23KB
yolov5_obb-master/LICENSE
34.3KB
yolov5_obb-master/README.md
4.62KB
yolov5_obb-master/requirements.txt
926B
yolov5_obb-master/setup.cfg
923B
yolov5_obb-master/test.txt
6.94KB
yolov5_obb-master/train.py
32.65KB
yolov5_obb-master/tutorial.ipynb
55.67KB
yolov5_obb-master/val.py
20.12KB
yolov5_obb-master/data/dotav15_poly.yaml
847B
yolov5_obb-master/data/dotav1_poly.yaml
819B
yolov5_obb-master/data/DroneVehicle_poly.yaml
550B
yolov5_obb-master/data/yolov5obb_demo.yaml
791B
yolov5_obb-master/data/yolov5obb_demo_split.yaml
866B
yolov5_obb-master/data/hyps/obb/hyp.finetune_dota.yaml
480B
yolov5_obb-master/data/hyps/obb/hyp.finetune_dota_CloseAug.yaml
520B
yolov5_obb-master/data/hyps/obb/hyp.finetune_DroneVehicle.yaml
485B
yolov5_obb-master/data/hyps/obb/hyp.paper.yaml
488B
yolov5_obb-master/data/scripts/download_weights.sh
523B
yolov5_obb-master/dataset/dataset_demo/imgnamefile.txt
6B
yolov5_obb-master/dataset/dataset_demo/images/P0032.png
5.3MB
yolov5_obb-master/dataset/dataset_demo/labelTxt/P0032.txt
3.49KB
yolov5_obb-master/docs/ChangeLog.md
1.07KB
yolov5_obb-master/docs/detection.png
296.46KB
yolov5_obb-master/docs/GetStart.md
6.65KB
yolov5_obb-master/docs/install.md
1.67KB
yolov5_obb-master/docs/results.png
110.54KB
yolov5_obb-master/docs/train_batch6.jpg
87.7KB
yolov5_obb-master/docs/YOLOv5_README.md
14.4KB
yolov5_obb-master/DOTA_devkit/DOTA.py
4.15KB
yolov5_obb-master/DOTA_devkit/DOTA2COCO.py
5.57KB
yolov5_obb-master/DOTA_devkit/DOTA2JSON.py
3.67KB
yolov5_obb-master/DOTA_devkit/dota_evaluation_task1.py
13.28KB
yolov5_obb-master/DOTA_devkit/dota_evaluation_task2.py
9.87KB
yolov5_obb-master/DOTA_devkit/dota_poly2rbox.py
7.66KB
yolov5_obb-master/DOTA_devkit/dota_utils.py
10.18KB
yolov5_obb-master/DOTA_devkit/hrsc2016_evaluation.py
10.74KB
yolov5_obb-master/DOTA_devkit/ImgSplit.py
9.99KB
yolov5_obb-master/DOTA_devkit/ImgSplit_multi_process.py
11.77KB
yolov5_obb-master/DOTA_devkit/mAOE_evaluation.py
7.91KB
yolov5_obb-master/DOTA_devkit/polyiou.cpp
3.88KB
yolov5_obb-master/DOTA_devkit/polyiou.h
202B
yolov5_obb-master/DOTA_devkit/polyiou.i
258B
yolov5_obb-master/DOTA_devkit/polyiou.py
7.58KB
yolov5_obb-master/DOTA_devkit/polyiou_wrap.cxx
263.78KB
yolov5_obb-master/DOTA_devkit/prepare_dota1_ms.py
3.49KB
yolov5_obb-master/DOTA_devkit/prepare_hrsc2016.py
714B
yolov5_obb-master/DOTA_devkit/ResultEnsembleNMS_multi_process.py
9.96KB
yolov5_obb-master/DOTA_devkit/ResultMerge.py
5.68KB
yolov5_obb-master/DOTA_devkit/ResultMerge_multi_process.py
9.81KB
yolov5_obb-master/DOTA_devkit/results_ensemble.py
2.46KB
yolov5_obb-master/DOTA_devkit/results_obb2hbb.py
2.27KB
yolov5_obb-master/DOTA_devkit/setup.py
445B
yolov5_obb-master/DOTA_devkit/SplitOnlyImage.py
2.32KB
yolov5_obb-master/DOTA_devkit/SplitOnlyImage_multi_process.py
3.7KB
yolov5_obb-master/DOTA_devkit/ucasaod_evaluation.py
10.65KB
yolov5_obb-master/DOTA_devkit/__init__.py
-
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/Makefile
56B
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/nms_wrapper.py
560B
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_nms.cpp
344.34KB
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_nms.hpp
298B
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_nms.pyx
875B
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_nms_kernel.cu
10.72KB
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_nms_test.py
-
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_overlaps.cpp
327.72KB
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_overlaps.hpp
106B
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_overlaps.pyx
552B
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_overlaps_kernel.cu
12.54KB
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/setup.py
5.89KB
yolov5_obb-master/DOTA_devkit/poly_nms_gpu/__init__.py
82B
yolov5_obb-master/models/common.py
29.82KB
yolov5_obb-master/models/experimental.py
4.48KB
yolov5_obb-master/models/tf.py
20.23KB
yolov5_obb-master/models/yolo.py
15.74KB
yolov5_obb-master/models/yolov5l.yaml
1.37KB
yolov5_obb-master/models/yolov5m.yaml
1.37KB
yolov5_obb-master/models/yolov5n.yaml
1.37KB
yolov5_obb-master/models/yolov5s.yaml
1.37KB
yolov5_obb-master/models/yolov5x.yaml
1.37KB
yolov5_obb-master/models/__init__.py
-
yolov5_obb-master/models/hub/anchors.yaml
3.26KB
yolov5_obb-master/models/hub/yolov3-spp.yaml
1.53KB
yolov5_obb-master/models/hub/yolov3-tiny.yaml
1.2KB
yolov5_obb-master/models/hub/yolov3.yaml
1.52KB
yolov5_obb-master/models/hub/yolov5-bifpn.yaml
1.39KB
yolov5_obb-master/models/hub/yolov5-fpn.yaml
1.19KB
yolov5_obb-master/models/hub/yolov5-p2.yaml
1.62KB
yolov5_obb-master/models/hub/yolov5-p6.yaml
1.66KB
yolov5_obb-master/models/hub/yolov5-p7.yaml
2.03KB
yolov5_obb-master/models/hub/yolov5-panet.yaml
1.37KB
yolov5_obb-master/models/hub/yolov5l6.yaml
1.78KB
yolov5_obb-master/models/hub/yolov5m6.yaml
1.78KB
yolov5_obb-master/models/hub/yolov5n6.yaml
1.78KB
yolov5_obb-master/models/hub/yolov5s-ghost.yaml
1.45KB
yolov5_obb-master/models/hub/yolov5s-transformer.yaml
1.41KB
yolov5_obb-master/models/hub/yolov5s6.yaml
1.78KB
yolov5_obb-master/models/hub/yolov5x6.yaml
1.78KB
yolov5_obb-master/sh/ddp_train.sh
1.58KB
yolov5_obb-master/tools/TestJson2VocClassTxt.py
2.3KB
yolov5_obb-master/tools/Xml2Txt.py
2.53KB
yolov5_obb-master/utils/activations.py
3.69KB
yolov5_obb-master/utils/augmentations.py
11.98KB
yolov5_obb-master/utils/autoanchor.py
8.68KB
yolov5_obb-master/utils/autobatch.py
2.13KB
yolov5_obb-master/utils/callbacks.py
2.34KB
yolov5_obb-master/utils/datasets.py
48.49KB
yolov5_obb-master/utils/downloads.py
6.13KB
yolov5_obb-master/utils/general.py
39.81KB
yolov5_obb-master/utils/loss.py
13.12KB
yolov5_obb-master/utils/metrics.py
13.75KB
yolov5_obb-master/utils/plots.py
24.2KB
yolov5_obb-master/utils/rboxs_utils.py
6.98KB
yolov5_obb-master/utils/torch_utils.py
13.14KB
yolov5_obb-master/utils/__init__.py
1.11KB
yolov5_obb-master/utils/aws/mime.sh
780B
yolov5_obb-master/utils/aws/resume.py
1.17KB
yolov5_obb-master/utils/aws/userdata.sh
1.22KB
yolov5_obb-master/utils/aws/__init__.py
-
yolov5_obb-master/utils/flask_rest_api/example_request.py
299B
yolov5_obb-master/utils/flask_rest_api/README.md
1.67KB
yolov5_obb-master/utils/flask_rest_api/restapi.py
1.05KB
yolov5_obb-master/utils/google_app_engine/additional_requirements.txt
105B
yolov5_obb-master/utils/google_app_engine/app.yaml
174B
yolov5_obb-master/utils/google_app_engine/Dockerfile
821B
yolov5_obb-master/utils/loggers/__init__.py
7.7KB
yolov5_obb-master/utils/loggers/wandb/log_dataset.py
1.01KB
yolov5_obb-master/utils/loggers/wandb/README.md
10.57KB
yolov5_obb-master/utils/loggers/wandb/sweep.py
1.12KB
yolov5_obb-master/utils/loggers/wandb/sweep.yaml
2.41KB
yolov5_obb-master/utils/loggers/wandb/wandb_utils.py
26.46KB
yolov5_obb-master/utils/loggers/wandb/__init__.py
-
yolov5_obb-master/utils/loggers/wandb/__pycache__/wandb_utils.cpython-39.pyc
19.17KB
yolov5_obb-master/utils/loggers/wandb/__pycache__/__init__.cpython-39.pyc
158B
yolov5_obb-master/utils/nms_rotated/nms_rotated_wrapper.py
2.74KB
yolov5_obb-master/utils/nms_rotated/setup.py
1.67KB
yolov5_obb-master/utils/nms_rotated/__init__.py
86B
yolov5_obb-master/utils/nms_rotated/src/box_iou_rotated_utils.h
10.34KB
yolov5_obb-master/utils/nms_rotated/src/nms_rotated_cpu.cpp
2.31KB
yolov5_obb-master/utils/nms_rotated/src/nms_rotated_cuda.cu
4.6KB
yolov5_obb-master/utils/nms_rotated/src/nms_rotated_ext.cpp
1.61KB
yolov5_obb-master/utils/nms_rotated/src/poly_nms_cpu.cpp
140B
yolov5_obb-master/utils/nms_rotated/src/poly_nms_cuda.cu
8.46KB

资源内容介绍

yolov5+csl标签.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)基于yolov5的旋转目标检测_yolo
馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.* [About Weights & Biases](#about-weights-&-biases)* [First-Time Setup](#first-time-setup)* [Viewing runs](#viewing-runs)* [Disabling wandb](#disabling-wandb)* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)* [Reports: Share your work with the world!](#reports)## About Weights & BiasesThink of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows: * [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time * [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically * [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization * [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators * [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently * [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models## First-Time Setup<details open> <summary> Toggle Details </summary>When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as: ```shell $ python train.py --project ... --name ... ```YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a><img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png"> </details>## Viewing Runs<details open> <summary> Toggle Details </summary>Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged: * Training & Validation losses * Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95 * Learning Rate over time * A bounding box debugging panel, showing the training progress over time * GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage** * System: Disk I/0, CPU utilization, RAM memory usage * Your trained model as W&B Artifact * Environment: OS and Python types, Git repository and state, **training command**<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p></details> ## Disabling wandb* training after running `wandb disabled` inside that directory creates no wandb run![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)* To enable wandb again, run `wandb online`![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)## Advanced UsageYou can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.<details open> <h3> 1: Train and Log Evaluation simultaneousy </h3> This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b> Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets, so no images will be uploaded from your system more than once. <details open> <summary> <b>Usage</b> </summary> <b>Code</b> <code> $ python train.py --upload_data val</code>![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png) </details> <h3>2. Visualize and Version Datasets</h3> Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact. <details> <summary> <b>Usage</b> </summary> <b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code> ![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png) </details> <h3> 3: Train using dataset artifact </h3> When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b> <details> <summary> <b>Usage</b> </summary> <b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png) </details> <h3> 4: Save model checkpoints as artifacts </h3> To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval. You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged <details> <summary> <b>Usage</b> </summary> <b>Code</b> <code> $ python train.py --save_period 1 </code>![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png) </details></details> <h3> 5: Resume runs from checkpoint artifacts. </h3>Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system. <details> <summary> <b>Usage</b> </summary> <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png) </details> <h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3> <b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b> The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset<

用户评论 (0)

发表评论

captcha