基于二阶自抗扰ADRC的轨迹跟踪控制,对车辆的不确定性和外界干扰具有一定抗干扰性,跟踪轨迹为双移线 有对应复现资料
资源内容介绍
基于二阶自抗扰ADRC的轨迹跟踪控制,对车辆的不确定性和外界干扰具有一定抗干扰性,跟踪轨迹为双移线。有对应复现资料。 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90239719/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90239719/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于二阶自抗扰<span class="_ _0"> </span><span class="ff2">ADRC<span class="_ _1"> </span></span>的轨迹跟踪控制<span class="ff3">,</span>是一种能够有效应对车辆不确定性和外界干扰的控制策略<span class="ff4">。</span></div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">本文将围绕这一主题展开<span class="ff3">,</span>探讨其在双移线轨迹跟踪方面的应用<span class="ff4">。</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">首先<span class="ff3">,</span>我们来介绍一下二阶自抗扰<span class="_ _0"> </span><span class="ff2">ADRC<span class="_ _1"> </span></span>控制器的原理<span class="ff4">。<span class="ff2">ADRC<span class="_ _1"> </span></span></span>控制器是一种新型的自适应控制方法</div><div class="t m0 x1 h2 y4 ff3 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">其核心思想是通过引入扰动观测器来估计和抵消系统的不确定性和外界干扰<span class="ff4">。</span>而二阶自抗扰<span class="_ _0"> </span><span class="ff2">ADRC</span></span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">控制器是在原有<span class="_ _0"> </span><span class="ff2">ADRC<span class="_ _1"> </span></span>基础上进行改进和优化<span class="ff3">,</span>使其具有更强的抗扰性和鲁棒性<span class="ff4">。</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">在轨迹跟踪控制中<span class="ff3">,</span>双移线是一种常见且具有挑战性的轨迹形式<span class="ff4">。</span>它要求车辆能够在两条移动的轨迹</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">线之间准确地行驶<span class="ff3">,</span>而且要能够及时适应轨迹线的变化<span class="ff4">。</span>对于这种情况<span class="ff3">,</span>传统的控制方法往往难以胜</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">任<span class="ff3">,</span>而二阶自抗扰<span class="_ _0"> </span><span class="ff2">ADRC<span class="_ _1"> </span></span>控制器则能够很好地应对<span class="ff4">。</span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">在实际应用中<span class="ff3">,</span>实现二阶自抗扰<span class="_ _0"> </span><span class="ff2">ADRC<span class="_ _1"> </span></span>控制器的轨迹跟踪需要注意以下几个方面<span class="ff4">。</span>首先<span class="ff3">,</span>需要对车辆</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">的动力学模型进行准确建模<span class="ff3">,</span>以便能够根据系统特性选择合适的控制参数<span class="ff4">。</span>其次<span class="ff3">,</span>需要根据实际情况</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">确定合适的轨迹规划算法<span class="ff3">,</span>以确保生成的轨迹能够满足双移线要求<span class="ff4">。</span>最后<span class="ff3">,</span>还需要根据系统实际运行</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">情况对控制器进行参数调整和优化<span class="ff3">,</span>以提高控制效果和鲁棒性<span class="ff4">。</span></div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">通过对二阶自抗扰<span class="_ _0"> </span><span class="ff2">ADRC<span class="_ _1"> </span></span>控制器的复现资料进行研究和分析<span class="ff3">,</span>我们可以看到该控制器在双移线轨迹跟</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">踪方面取得了良好的效果<span class="ff4">。</span>不论是对于车辆动力学模型的建模还是对于轨迹规划算法的选择<span class="ff3">,</span>二阶自</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">抗扰<span class="_ _0"> </span><span class="ff2">ADRC<span class="_ _1"> </span></span>控制器都能够提供有效的解决方案<span class="ff4">。</span>同时<span class="ff3">,</span>该控制器还具有较强的鲁棒性<span class="ff3">,</span>能够在面对不</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">确定性和外界干扰时保持稳定的性能<span class="ff4">。</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">总的来说<span class="ff3">,</span>基于二阶自抗扰<span class="_ _0"> </span><span class="ff2">ADRC<span class="_ _1"> </span></span>的轨迹跟踪控制是一个具有广泛应用前景的控制策略<span class="ff4">。</span>它能够有效</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">地应对车辆不确定性和外界干扰<span class="ff3">,</span>稳定地实现双移线轨迹跟踪<span class="ff4">。</span>通过对其原理和应用进行深入研究<span class="ff3">,</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">我们可以更好地理解和掌握这一控制器的设计和实现方法<span class="ff3">,</span>为实际工程应用提供有力支撑<span class="ff4">。</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">综上所述<span class="ff3">,</span>基于二阶自抗扰<span class="_ _0"> </span><span class="ff2">ADRC<span class="_ _1"> </span></span>的轨迹跟踪控制在车辆控制领域具有重要的意义<span class="ff4">。</span>通过对车辆动力</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">学模型建模<span class="ff4">、</span>轨迹规划算法选择和参数调整优化等方面的研究<span class="ff3">,</span>我们可以深入探索其在双移线轨迹跟</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">踪中的应用潜力<span class="ff4">。</span>未来<span class="ff3">,</span>基于二阶自抗扰<span class="_ _0"> </span><span class="ff2">ADRC<span class="_ _1"> </span></span>的轨迹跟踪控制有望在自动驾驶和智能交通系统等领</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">域发挥更大作用<span class="ff3">,</span>为改善交通安全和提高车辆性能做出贡献<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>