【PID和LQR主动悬架模型对比】 分别建立了PID控制和LQR控制的的主动悬架模型,比较两种控制器的控制效果 以悬架主动力为控制目标,输入为B级随机路面,输出为车身垂向加速度、俯仰角
资源内容介绍
【PID和LQR主动悬架模型对比】 分别建立了PID控制和LQR控制的的主动悬架模型,比较两种控制器的控制效果。以悬架主动力为控制目标,输入为B级随机路面,输出为车身垂向加速度、俯仰角加速度、悬架动挠度等平顺性评价指标,可做汽车平顺性仿真。二自由度(1 4)车辆模型:r360.四自由度(1 2)车辆模型:r550. 内容包括模型所有源文件,说明文档和参考资料 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90239537/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90239537/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">【<span class="ff2">PID<span class="_ _0"> </span><span class="ff3">和<span class="_ _1"> </span></span>LQR<span class="_ _0"> </span><span class="ff3">主动悬架模型对比</span></span>】</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">&nbsp;&nbsp;&nbsp;&nbsp;<span class="ff3">随着汽车行业的发展<span class="ff4">,</span>车辆的平顺性成为了一个越来越重要的指标<span class="ff1">。</span></span></div><div class="t m0 x1 h2 y3 ff3 fs0 fc0 sc0 ls0 ws0">而在车辆悬架系统中<span class="ff4">,</span>主动悬架系统作为一种新兴的悬架控制技术<span class="ff4">,</span>被广泛研究和应用<span class="ff1">。<span class="ff2">PID<span class="_ _0"> </span></span></span>控制和</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">LQR<span class="_ _0"> </span><span class="ff3">控制是主动悬架系统中常见的控制方法<span class="ff4">,</span>本文将分别建立<span class="_ _1"> </span></span>PID<span class="_ _0"> </span><span class="ff3">控制和<span class="_ _1"> </span></span>LQR<span class="_ _0"> </span><span class="ff3">控制的主动悬架模型</span></div><div class="t m0 x1 h2 y5 ff4 fs0 fc0 sc0 ls0 ws0">,<span class="ff3">并比较两种控制器的控制效果<span class="ff1">。</span></span></div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">&nbsp;&nbsp;&nbsp;&nbsp;<span class="ff3">首先<span class="ff4">,</span>我们分别建立了<span class="_ _1"> </span></span>PID<span class="_ _0"> </span><span class="ff3">控制和<span class="_ _1"> </span></span>LQR<span class="_ _0"> </span><span class="ff3">控制的主动悬架模型<span class="ff1">。</span>这两</span></div><div class="t m0 x1 h2 y7 ff3 fs0 fc0 sc0 ls0 ws0">种控制方法都是基于反馈控制原理<span class="ff4">,</span>通过对车辆悬架系统状态的监测和调节<span class="ff4">,</span>实现对车辆平顺性的控</div><div class="t m0 x1 h2 y8 ff3 fs0 fc0 sc0 ls0 ws0">制<span class="ff1">。<span class="ff2">PID<span class="_ _0"> </span></span></span>控制器基于比例<span class="ff1">、</span>积分和微分三个环节组成<span class="ff4">,</span>通过调节这三个环节的参数<span class="ff4">,</span>实现对系统的稳</div><div class="t m0 x1 h2 y9 ff3 fs0 fc0 sc0 ls0 ws0">定性和响应速度的控制<span class="ff1">。</span>而<span class="_ _1"> </span><span class="ff2">LQR<span class="_ _0"> </span></span>控制器则是基于线性二次调节原理<span class="ff4">,</span>通过对系统状态的加权<span class="ff4">,</span>实现对</div><div class="t m0 x1 h2 ya ff3 fs0 fc0 sc0 ls0 ws0">系统平顺性和稳定性的控制<span class="ff1">。</span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">&nbsp;&nbsp;&nbsp;&nbsp;<span class="ff3">接下来<span class="ff4">,</span>我们比较了<span class="_ _1"> </span></span>PID<span class="_ _0"> </span><span class="ff3">控制和<span class="_ _1"> </span></span>LQR<span class="_ _0"> </span><span class="ff3">控制的控制效果<span class="ff1">。</span>为了评价悬</span></div><div class="t m0 x1 h2 yc ff3 fs0 fc0 sc0 ls0 ws0">架系统的平顺性<span class="ff4">,</span>我们以悬架主动力为控制目标<span class="ff4">,</span>输入为<span class="_ _1"> </span><span class="ff2">B<span class="_ _0"> </span></span>级随机路面<span class="ff4">,</span>输出为车身垂向加速度<span class="ff1">、</span>俯</div><div class="t m0 x1 h2 yd ff3 fs0 fc0 sc0 ls0 ws0">仰角加速度<span class="ff1">、</span>悬架动挠度等平顺性评价指标<span class="ff1">。</span>通过对悬架系统的平顺性进行仿真<span class="ff4">,</span>我们可以直观地比</div><div class="t m0 x1 h2 ye ff3 fs0 fc0 sc0 ls0 ws0">较两种控制器的效果<span class="ff1">。</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">&nbsp;&nbsp;&nbsp;&nbsp;<span class="ff3">在进行仿真实验时<span class="ff4">,</span>我们采用了二自由度<span class="ff4">(</span></span>1 4<span class="ff4">)<span class="ff3">车辆模型和四自由</span></span></div><div class="t m0 x1 h2 y10 ff3 fs0 fc0 sc0 ls0 ws0">度<span class="ff4">(<span class="ff2">1 2</span>)</span>车辆模型<span class="ff1">。</span>二自由度车辆模型适用于简单的路面情况<span class="ff4">,</span>在对路况变化响应要求不高的情况</div><div class="t m0 x1 h2 y11 ff3 fs0 fc0 sc0 ls0 ws0">下<span class="ff4">,</span>能够较好地评估控制器的效果<span class="ff1">。</span>而四自由度车辆模型则适用于复杂的路况情况<span class="ff4">,</span>能够更真实地模</div><div class="t m0 x1 h2 y12 ff3 fs0 fc0 sc0 ls0 ws0">拟车辆在不同路况下的行驶状态<span class="ff1">。</span>通过比较这两种车辆模型下的控制效果<span class="ff4">,</span>我们可以更全面地评估两</div><div class="t m0 x1 h2 y13 ff3 fs0 fc0 sc0 ls0 ws0">种控制器的优劣<span class="ff1">。</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">&nbsp;&nbsp;&nbsp;&nbsp;<span class="ff3">在进行仿真实验时<span class="ff4">,</span>我们还考虑了悬架系统的不同输入条件和工况变</span></div><div class="t m0 x1 h2 y15 ff3 fs0 fc0 sc0 ls0 ws0">化<span class="ff1">。</span>通过对不同输入条件下的仿真实验<span class="ff4">,</span>我们可以考察控制器在不同路况下的控制效果<span class="ff1">。</span>同时<span class="ff4">,</span>我们</div><div class="t m0 x1 h2 y16 ff3 fs0 fc0 sc0 ls0 ws0">还考虑了悬架系统在不同速度下的工作状态变化<span class="ff4">,</span>通过对不同速度下的仿真实验<span class="ff4">,</span>我们可以考察控制</div><div class="t m0 x1 h2 y17 ff3 fs0 fc0 sc0 ls0 ws0">器在不同工况下的控制效果<span class="ff1">。</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">&nbsp;&nbsp;&nbsp;&nbsp;<span class="ff3">最后<span class="ff4">,</span>我们总结了<span class="_ _1"> </span></span>PID<span class="_ _0"> </span><span class="ff3">控制和<span class="_ _1"> </span></span>LQR<span class="_ _0"> </span><span class="ff3">控制的优缺点<span class="ff4">,</span>并提出了相关的</span></div><div class="t m0 x1 h2 y19 ff3 fs0 fc0 sc0 ls0 ws0">改进方向<span class="ff1">。<span class="ff2">PID<span class="_ _0"> </span></span></span>控制器具有参数调节方便的优点<span class="ff4">,</span>但是对于复杂的非线性系统<span class="ff4">,</span>其控制效果受到限制</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">。<span class="ff3">而<span class="_ _1"> </span><span class="ff2">LQR<span class="_ _0"> </span></span>控制器具有较好的控制效果<span class="ff4">,</span>但是在实际应用中需要对系统进行较为复杂的线性化处理</span>。<span class="ff3">针</span></div><div class="t m0 x1 h2 y1b ff3 fs0 fc0 sc0 ls0 ws0">对这些问题<span class="ff4">,</span>我们可以考虑将<span class="_ _1"> </span><span class="ff2">PID<span class="_ _0"> </span></span>控制器与<span class="_ _1"> </span><span class="ff2">LQR<span class="_ _0"> </span></span>控制器进行结合<span class="ff4">,</span>通过优化参数调节和系统线性化</div><div class="t m0 x1 h2 y1c ff3 fs0 fc0 sc0 ls0 ws0">处理<span class="ff4">,</span>实现更好的控制效果<span class="ff1">。</span></div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">&nbsp;&nbsp;&nbsp;&nbsp;<span class="ff3">综上所述<span class="ff4">,</span>本文分别建立了<span class="_ _1"> </span></span>PID<span class="_ _0"> </span><span class="ff3">控制和<span class="_ _1"> </span></span>LQR<span class="_ _0"> </span><span class="ff3">控制的主动悬架模型<span class="ff4">,</span></span></div><div class="t m0 x1 h2 y1e ff3 fs0 fc0 sc0 ls0 ws0">并比较了两种控制器的控制效果<span class="ff1">。</span>通过对悬架系统的平顺性进行仿真实验<span class="ff4">,</span>我们可以直观地比较两种</div><div class="t m0 x1 h2 y1f ff3 fs0 fc0 sc0 ls0 ws0">控制器的效果<span class="ff1">。</span>实验结果表明<span class="ff4">,<span class="ff2">LQR<span class="_ _0"> </span></span></span>控制器在平顺性方面表现出更好的效果<span class="ff1">。</span>最后<span class="ff4">,</span>我们总结了<span class="_ _1"> </span><span class="ff2">PID</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>