MATLAB滚动轴承故障诊断程序:采用西楚凯斯大学数据,首先通过变分模态分解(VMD)算法处理,而后分别通过包络谱分析实现故障诊断ps.通过尖峰对应的频率与计算出的故障频率比较,实现故障诊断
资源内容介绍
MATLAB滚动轴承故障诊断程序:采用西楚凯斯大学数据,首先通过变分模态分解(VMD)算法处理,而后分别通过包络谱分析实现故障诊断ps.通过尖峰对应的频率与计算出的故障频率比较,实现故障诊断 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90274111/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90274111/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">MATLAB<span class="_ _0"> </span><span class="ff2">滚动轴承故障诊断程序</span></div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff3">:</span>滚动轴承作为机械设备中不可或缺的组成部分<span class="ff3">,</span>其性能直接影响着设备的可靠性和寿命<span class="ff4">。</span>因此</div><div class="t m0 x1 h2 y3 ff3 fs0 fc0 sc0 ls0 ws0">,<span class="ff2">及早发现和诊断滚动轴承的潜在故障是至关重要的<span class="ff4">。</span>本文提出了一种基于<span class="_ _1"> </span><span class="ff1">MATLAB<span class="_ _0"> </span></span>的滚动轴承故障</span></div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">诊断程序<span class="ff4">。</span>该程序采用西楚凯斯大学提供的滚动轴承数据<span class="ff3">,</span>通过变分模态分解<span class="ff1">(VMD)</span>算法进行信号处</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">理<span class="ff3">,</span>并利用包络谱分析方法实现故障诊断<span class="ff4">。</span>通过比较尖峰频率与计算出的故障频率<span class="ff3">,</span>可以准确地进行</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">滚动轴承故障的诊断<span class="ff4">。</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">引言</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">滚动轴承在机械设备中的作用不可忽视<span class="ff3">,</span>它承载着重要的转动部件的负荷<span class="ff3">,</span>并保证机械设备的正常运</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">行<span class="ff4">。</span>然而<span class="ff3">,</span>由于工作环境的恶劣<span class="ff4">、</span>负载变化和不良维护等原因<span class="ff3">,</span>滚动轴承容易受到损伤和故障<span class="ff4">。</span>这些</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">故障如果不及时发现和诊断<span class="ff3">,</span>将导致设备停机<span class="ff4">、</span>生产延误甚至严重的安全事故<span class="ff4">。</span>因此<span class="ff3">,</span>开发一种有效</div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">的滚动轴承故障诊断方法具有重要的实际意义<span class="ff4">。</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff2">数据处理方法</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">本文采用了变分模态分解<span class="ff1">(VMD)</span>算法对滚动轴承信号进行预处理<span class="ff4">。<span class="ff1">VMD<span class="_ _0"> </span></span></span>是一种基于自适应的信号分解</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">方法<span class="ff3">,</span>可以将原始信号分解为多个模态函数<span class="ff4">。</span>通过对滚动轴承信号进行<span class="_ _1"> </span><span class="ff1">VMD<span class="_ _0"> </span></span>分解<span class="ff3">,</span>可以获得各个频率</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">成分的变化情况<span class="ff3">,</span>为后续的故障诊断提供准确的基础<span class="ff4">。</span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff2">包络谱分析方法</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">在<span class="_ _1"> </span><span class="ff1">VMD<span class="_ _0"> </span></span>处理后的信号基础上<span class="ff3">,</span>本文采用包络谱分析方法进行滚动轴承的故障诊断<span class="ff4">。</span>包络谱分析是一种</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">常用的故障诊断方法<span class="ff3">,</span>通过提取信号的包络谱图<span class="ff3">,</span>可以准确地反映出滚动轴承的故障频率<span class="ff4">。</span>根据滚动</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">轴承不同故障类型的特征频率<span class="ff3">,</span>可以识别出轴承的故障类型<span class="ff3">,</span>并进行进一步的分析和处理<span class="ff4">。</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _2"> </span><span class="ff2">故障诊断与判断</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">尖峰频率是滚动轴承故障诊断的重要指标之一<span class="ff4">。</span>通过比较尖峰频率与计算出的故障频率<span class="ff3">,</span>可以判断出</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">滚动轴承是否存在故障<span class="ff4">。</span>当两者的值相近或重合时<span class="ff3">,</span>表示滚动轴承存在故障<span class="ff3">;</span>而当两者的值相差较大</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">时<span class="ff3">,</span>表示滚动轴承正常运行<span class="ff4">。</span>基于此原理<span class="ff3">,</span>我们可以准确地对滚动轴承进行故障诊断和判断<span class="ff4">。</span></div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">5.<span class="_ _2"> </span><span class="ff2">结果与讨论</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">通过使用<span class="_ _1"> </span><span class="ff1">MATLAB<span class="_ _0"> </span></span>编写的滚动轴承故障诊断程序<span class="ff3">,</span>我们成功地对西楚凯斯大学提供的滚动轴承数据进</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">行了故障诊断<span class="ff4">。</span>通过<span class="_ _1"> </span><span class="ff1">VMD<span class="_ _0"> </span></span>算法的信号处理和包络谱分析方法<span class="ff3">,</span>我们准确地识别出了滚动轴承的故障类</div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">型<span class="ff3">,</span>并进行了可靠的判断<span class="ff4">。</span>实验证明<span class="ff3">,</span>该程序具有较高的准确性和可靠性<span class="ff3">,</span>可以为滚动轴承的故障诊</div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">断提供重要的参考<span class="ff4">。</span></div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">6.<span class="_ _2"> </span><span class="ff2">总结</span></div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">本文基于<span class="_ _1"> </span><span class="ff1">MATLAB<span class="_ _0"> </span></span>开发了滚动轴承故障诊断程序<span class="ff3">,</span>通过<span class="_ _1"> </span><span class="ff1">VMD<span class="_ _0"> </span></span>算法和包络谱分析方法<span class="ff3">,</span>实现了对滚动轴</div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0">承的故障诊断<span class="ff4">。</span>结果表明<span class="ff3">,</span>该程序具有较高的准确性和可靠性<span class="ff3">,</span>对及早发现和排除滚动轴承故障具有</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>