将信号输入进行经验模态分解(EMD)及其改进分解方法eemd分解、ceemd分解等分解方法,然后将信号复原,比较每种方法等误差 还有克服端点效应的方法,对信号进行极值延拓,然后进行eemd,Mat
资源内容介绍
将信号输入进行经验模态分解(EMD)及其改进分解方法eemd分解、ceemd分解等分解方法,然后将信号复原,比较每种方法等误差。还有克服端点效应的方法,对信号进行极值延拓,然后进行eemd,Matlab代码 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90274026/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90274026/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">经验模态分解<span class="ff2">(EMD)</span>是一种信号处理方法<span class="ff3">,</span>用于将非线性和非稳态信号分解为一组称为本征模态函数</div><div class="t m0 x1 h2 y2 ff3 fs0 fc0 sc0 ls0 ws0">(<span class="ff2">IMF</span>)<span class="ff1">的固有模态函数<span class="ff4">。</span>本文将重点讨论<span class="_ _0"> </span><span class="ff2">EMD<span class="_ _1"> </span></span>及其改进分解方法</span>,<span class="ff1">以及信号复原和误差对比<span class="ff4">。</span>此外</span></div><div class="t m0 x1 h2 y3 ff3 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">还探讨了如何克服信号分解过程中的端点效应</span>,<span class="ff1">并提供了使用极值延拓进行<span class="_ _0"> </span><span class="ff2">EMD<span class="_ _1"> </span></span>分解的方法和相关</span></div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">Matlab<span class="_ _1"> </span><span class="ff1">代码<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">首先<span class="ff3">,<span class="ff2">EMD<span class="_ _1"> </span></span></span>是一种数据驱动的方法<span class="ff3">,</span>可以自适应地将信号分解成多个<span class="_ _0"> </span><span class="ff2">IMF<span class="_ _1"> </span></span>和一个残差项<span class="ff4">。<span class="ff2">IMF<span class="_ _1"> </span></span></span>是在不</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">同时间尺度上表现出明显特征的函数<span class="ff3">,</span>其数量取决于信号的复杂程度<span class="ff4">。<span class="ff2">EMD<span class="_ _1"> </span></span></span>的主要步骤包括以下几个</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">方面<span class="ff3">:</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">构建信号的上<span class="ff4">、</span>下包络线<span class="ff3">,</span>并计算包络线的平均值作为本征模态函数的初值<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">通过将信号与其包络线的差值作为新的信号<span class="ff3">,</span>并迭代地执行步骤<span class="_ _0"> </span></span>1<span class="ff3">,<span class="ff1">直到所得的函数满足<span class="_ _0"> </span></span></span>IMF</div><div class="t m0 x2 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">的定义<span class="ff4">。</span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff1">将满足<span class="_ _0"> </span></span>IMF<span class="_ _1"> </span><span class="ff1">定义的函数作为一个<span class="_ _0"> </span></span>IMF<span class="ff3">,<span class="ff1">并将其从原始信号中减去<span class="ff4">。</span>重复上述步骤</span>,<span class="ff1">直到得到所</span></span></div><div class="t m0 x2 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">有的<span class="_ _0"> </span><span class="ff2">IMF<span class="_ _1"> </span></span>和残差项<span class="ff4">。</span></div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">然而<span class="ff3">,<span class="ff2">EMD<span class="_ _1"> </span></span></span>方法可能存在一些问题<span class="ff3">,</span>例如模态重叠和端点效应<span class="ff4">。</span>为了改进<span class="_ _0"> </span><span class="ff2">EMD<span class="_ _1"> </span></span>方法<span class="ff3">,</span>出现了一些改进</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">的分解方法<span class="ff3">,</span>如经验模态分解方法改进<span class="ff3">(<span class="ff2">EEMD</span>)<span class="ff4">、</span></span>对称经验模态分解方法<span class="ff3">(<span class="ff2">SEMD</span>)</span>和方差稳定经验</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">模态分解方法<span class="ff3">(<span class="ff2">VSEMD</span>)</span>等<span class="ff4">。</span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">其中<span class="ff3">,<span class="ff2">EEMD<span class="_ _1"> </span></span></span>是通过对原始信号添加高斯噪声的方式来打破模态重叠问题<span class="ff4">。</span>具体而言<span class="ff3">,</span>它通过对多个</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">扰动信号进行<span class="_ _0"> </span><span class="ff2">EMD<span class="_ _1"> </span></span>分解<span class="ff3">,</span>然后对相同<span class="_ _0"> </span><span class="ff2">IMF<span class="_ _1"> </span></span>进行平均<span class="ff3">,</span>从而得到最终的<span class="_ _0"> </span><span class="ff2">IMF<span class="ff4">。</span></span>通过引入随机性<span class="ff3">,<span class="ff2">EEMD</span></span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">能够有效地减小模态重叠和伪模态的影响<span class="ff4">。</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">另一种改进方法是对称经验模态分解方法<span class="ff3">(<span class="ff2">SEMD</span>),</span>它通过对原始信号的正向和反向<span class="_ _0"> </span><span class="ff2">EMD<span class="_ _1"> </span></span>分解得到</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">的<span class="_ _0"> </span><span class="ff2">IMF<span class="_ _1"> </span></span>进行平均<span class="ff3">,</span>从而减小模态重叠问题<span class="ff4">。</span></div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">此外<span class="ff3">,</span>方差稳定经验模态分解方法<span class="ff3">(<span class="ff2">VSEMD</span>)</span>是通过引入方差标准化技术来解决模态重叠问题<span class="ff4">。</span>具体</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">而言<span class="ff3">,</span>它在<span class="_ _0"> </span><span class="ff2">EMD<span class="_ _1"> </span></span>分解的每一步之后<span class="ff3">,</span>对每个<span class="_ _0"> </span><span class="ff2">IMF<span class="_ _1"> </span></span>的标准差进行归一化处理<span class="ff3">,</span>以确保不同尺度的<span class="_ _0"> </span><span class="ff2">IMF</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">具有相似的能量分布<span class="ff4">。</span></div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">在进行信号复原时<span class="ff3">,</span>可以将所有的<span class="_ _0"> </span><span class="ff2">IMF<span class="_ _1"> </span></span>相加得到重构信号<span class="ff3">,</span>然后与原始信号进行误差比较<span class="ff4">。</span>通过比较</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">不同分解方法得到的重构信号<span class="ff3">,</span>可以评估各种方法的性能和精度<span class="ff4">。</span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">另外<span class="ff3">,</span>信号分解过程中常会遇到的一个问题是端点效应<span class="ff4">。</span>端点效应是指在信号两端由于缺少数据而导</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">致的不完整<span class="_ _0"> </span><span class="ff2">IMF<span class="_ _1"> </span></span>生成<span class="ff4">。</span>为了克服端点效应<span class="ff3">,</span>可以使用极值延拓的方法<span class="ff3">,</span>即在信号两端分别延拓一个周</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">期的数据<span class="ff3">,</span>使得分解得到的<span class="_ _0"> </span><span class="ff2">IMF<span class="_ _1"> </span></span>数量更加准确<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>