"基于CNN-BILSTM-Attention及SAM-Attention机制的深度学习模型:多特征分类预测与效果可视化",CNN-BILSTM-Attention基于卷积神经网络-双向长短期记忆神经
资源内容介绍
"基于CNN-BILSTM-Attention及SAM-Attention机制的深度学习模型:多特征分类预测与效果可视化",CNN-BILSTM-Attention基于卷积神经网络-双向长短期记忆神经网络-空间注意力机制CNN-BILSTM-SAM-Attention多特征分类预测。多特征输入单输出的二分类及多分类模型。程序内注释详细替数据就可以用。程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。多边形面积PAM,分类准确率,灵敏度,特异性,曲线下面积AUC,Kappa系数,F_measure。,核心关键词:CNN-BILSTM-Attention; 空间注意力机制; 多特征分类预测; MATLAB程序; 分类效果图; 迭代优化图; 混淆矩阵图; 多边形面积; 分类准确率; 灵敏度; 特异性; AUC; Kappa系数; F_measure。,基于多特征输入的CNN-BILSTM-Attention模型及其分类预测效果图优化分析 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90341902/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90341902/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">CNN-BILSTM-SAM-Attention<span class="_ _1"> </span></span>的深度学习模型在多特征分类预测中的应用</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着深度学习技术的不断发展<span class="ff4">,</span>各种神经网络模型在多特征分类预测任务中得到了广泛应用<span class="ff3">。</span>本文将</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">介绍一种基于<span class="_ _0"> </span><span class="ff2">CNN-BILSTM-SAM-Attention<span class="_ _1"> </span></span>的深度学习模型<span class="ff4">,</span>该模型能够有效地处理多特征输入</div><div class="t m0 x1 h2 y5 ff4 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">并实现单输出或多输出的二分类及多分类预测<span class="ff3">。</span></span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>模型架构</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">该模型主要由卷积神经网络<span class="ff4">(<span class="ff2">CNN</span>)<span class="ff3">、</span></span>双向长短期记忆神经网络<span class="ff4">(<span class="ff2">BILSTM</span>)</span>和空间注意力机制<span class="ff4">(</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">SAM-Attention<span class="ff4">)<span class="ff1">组成<span class="ff3">。</span></span></span></div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">卷积神经网络<span class="ff4">(</span></span>CNN<span class="ff4">):<span class="ff1">用于提取输入数据的空间特征<span class="ff3">。</span></span></span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">双向长短期记忆神经网络<span class="ff4">(</span></span>BILSTM<span class="ff4">):<span class="ff1">用于捕捉序列数据的时序依赖关系<span class="ff3">。</span></span></span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff1">空间注意力机制<span class="ff4">(</span></span>SAM-Attention<span class="ff4">):<span class="ff1">用于提高模型对关键特征的关注度</span>,<span class="ff1">从而提高分类准确</span></span></div><div class="t m0 x2 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">率<span class="ff3">。</span></div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>程序实现</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">以下是一个基于<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _1"> </span></span>的简单程序示例<span class="ff4">,</span>展示了如何实现该模型并进行多特征分类预测<span class="ff3">。</span>程序中的</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">注释详细说明了如何替换数据以实现模型的训练和测试<span class="ff3">。</span></div><div class="t m0 x1 h3 y10 ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">加载或准备多特征数据集<span class="ff4">,</span>包括输入特征和标签</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">这里需要替换为实际的数据集路径和格式</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">inputFeatures = load('input_features.mat'); % <span class="ff1">例如<span class="ff4">,</span>这是一个包含多特征的矩阵</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">labels = load('labels.mat'); % <span class="ff1">这是对应的标签矩阵</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">定义<span class="_ _0"> </span></span>CNN-BILSTM-SAM-Attention<span class="_ _1"> </span><span class="ff1">模型结构</span></div><div class="t m0 x1 h3 y16 ff2 fs0 fc0 sc0 ls0 ws0">layers = [ ...</div><div class="t m0 x2 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">% CNN<span class="_ _1"> </span><span class="ff1">部分<span class="ff4">,</span>用于特征提取</span></div><div class="t m0 x2 h3 y18 ff2 fs0 fc0 sc0 ls0 ws0">...</div><div class="t m0 x2 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">% BILSTM<span class="_ _1"> </span><span class="ff1">部分<span class="ff4">,</span>用于捕捉时序信息</span></div><div class="t m0 x2 h3 y1a ff2 fs0 fc0 sc0 ls0 ws0">...</div><div class="t m0 x2 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">% SAM-Attention<span class="_ _1"> </span><span class="ff1">部分<span class="ff4">,</span>用于空间注意力机制的实现</span></div><div class="t m0 x2 h3 y1c ff2 fs0 fc0 sc0 ls0 ws0">...];</div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">训练集和测试集划分<span class="ff4">(</span>这里需要根据实际情况进行划分<span class="ff4">)</span></span></div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">train_inputs = ...; % <span class="ff1">训练集输入特征</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>