基于INGO-BIlstm算法的电力功率负荷预测模型:超参数优化与滑动窗口输入结构的研究与应用,INGO-BIlstm基于改进北方苍鹰优化算法INGO-bilstm,优化超参数 滑动窗口输入结构

CDzzIIFnqZZIP基于改进北方苍鹰.zip  191.78KB

资源文件列表:

ZIP 基于改进北方苍鹰.zip 大约有13个文件
  1. 1.jpg 56.22KB
  2. 2.jpg 59.75KB
  3. 3.jpg 101.98KB
  4. 基于改进北方苍鹰优化.html 10.5KB
  5. 基于改进北方苍鹰优化算法优化超参数滑.html 10.28KB
  6. 基于改进北方苍鹰优化算法的模型在电力.doc 1.91KB
  7. 基于改进北方苍鹰优化算法的模型在电力功率负.txt 2.12KB
  8. 基于改进北方苍鹰优化算法的电力功率.html 10.89KB
  9. 基于改进北方苍鹰优化算法的超参数.txt 2.31KB
  10. 基于改进北方苍鹰优化算法的超参数优.txt 1.96KB
  11. 基于改进北方苍鹰优化算法的超参数优化及其在电.doc 1.93KB
  12. 基于改进北方苍鹰优化算法的超参数优化及其在电力功.txt 2.18KB
  13. 文章标题基于改进北方苍鹰优化算法的电力功率负荷预.txt 1.88KB

资源介绍:

基于INGO-BIlstm算法的电力功率负荷预测模型:超参数优化与滑动窗口输入结构的研究与应用,INGO-BIlstm 基于改进北方苍鹰优化算法INGO-bilstm,优化超参数。 滑动窗口输入结构,基于matlab。 电力功率负荷预测,不做任何,效果如下。 可自己替数据和优化算法 ,INGO-Bilstm; 优化超参数; 滑动窗口输入结构; Matlab; 电力功率负荷预测; 数据替换; 算法优化,基于改进算法的电力负荷预测模型

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90341597/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90341597/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">基于改进北方苍鹰优化算法<span class="_ _0"> </span></span>INGO-BIlstm<span class="_ _1"> </span><span class="ff2">的超参数优化及其在电力功率负荷预测中的应用</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">随着人工智能技术的飞速发展<span class="ff4">,</span>电力功率负荷预测成为了电力行业研究的热点<span class="ff3">。</span>其中<span class="ff4">,</span>循环神经网络</div><div class="t m0 x1 h2 y4 ff4 fs0 fc0 sc0 ls0 ws0">(<span class="ff1">RNN</span>)<span class="ff2">的变种<span class="ff1">——</span>双向长短期记忆网络</span>(<span class="ff1">BiLSTM</span>)<span class="ff2">因其对序列数据的强大处理能力</span>,<span class="ff2">在电力负荷预</span></div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">测中得到了广泛应用<span class="ff3">。</span>然而<span class="ff4">,</span>如何优化<span class="_ _0"> </span><span class="ff1">BiLstm<span class="_ _1"> </span></span>模型的超参数<span class="ff4">,</span>提高其预测精度<span class="ff4">,</span>一直是研究的重点</div><div class="t m0 x1 h2 y6 ff3 fs0 fc0 sc0 ls0 ws0">。<span class="ff2">本文将探讨一种基于改进北方苍鹰优化算法<span class="ff4">(<span class="ff1">INGO</span>)</span>的<span class="_ _0"> </span><span class="ff1">BiLstm<span class="_ _1"> </span></span>模型超参数优化方法<span class="ff4">,</span>并使用滑动</span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">窗口输入结构<span class="ff4">,</span>在<span class="_ _0"> </span><span class="ff1">Matlab<span class="_ _1"> </span></span>环境下进行电力功率负荷预测<span class="ff3">。</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、<span class="ff1">INGO-BIlstm<span class="_ _1"> </span></span></span>模型及超参数优化</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span>INGO<span class="_ _1"> </span><span class="ff2">算法简介</span></div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">INGO<span class="_ _1"> </span><span class="ff2">算法是一种新型的优化算法<span class="ff4">,</span>其灵感来源于北方苍鹰的捕食行为<span class="ff3">。</span>该算法通过模拟自然界的优</span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">化过程<span class="ff4">,</span>能够在复杂的搜索空间中寻找最优解<span class="ff3">。</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>INGO-BIlstm<span class="_ _1"> </span><span class="ff2">模型构建</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">将<span class="_ _0"> </span><span class="ff1">INGO<span class="_ _1"> </span></span>算法与<span class="_ _0"> </span><span class="ff1">BiLstm<span class="_ _1"> </span></span>模型相结合<span class="ff4">,</span>构建<span class="_ _0"> </span><span class="ff1">INGO-BIlstm<span class="_ _1"> </span></span>模型<span class="ff3">。</span>该模型利用<span class="_ _0"> </span><span class="ff1">INGO<span class="_ _1"> </span></span>算法对<span class="_ _0"> </span><span class="ff1">BiLstm</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">模型的超参数进行优化<span class="ff4">,</span>包括隐藏层数<span class="ff3">、</span>学习率<span class="ff3">、</span>批处理大小等<span class="ff3">。</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff2">超参数优化</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">通过<span class="_ _0"> </span><span class="ff1">INGO<span class="_ _1"> </span></span>算法的迭代优化过程<span class="ff4">,</span>寻找最佳的超参数组合<span class="ff4">,</span>以提高<span class="_ _0"> </span><span class="ff1">BiLstm<span class="_ _1"> </span></span>模型在电力功率负荷预测</div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">中的性能<span class="ff3">。</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>滑动窗口输入结构</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">为了更好地捕捉电力功率负荷的时序特性<span class="ff4">,</span>采用滑动窗口输入结构<span class="ff3">。</span>该结构能够根据历史数据和当前</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">数据<span class="ff4">,</span>动态地调整输入序列的长度<span class="ff4">,</span>从而更好地反映电力功率负荷的时变特性<span class="ff3">。</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、<span class="ff1">Matlab<span class="_ _1"> </span></span></span>实现</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">在<span class="_ _0"> </span><span class="ff1">Matlab<span class="_ _1"> </span></span>环境下<span class="ff4">,</span>实现<span class="_ _0"> </span><span class="ff1">INGO-BIlstm<span class="_ _1"> </span></span>模型<span class="ff3">。</span>首先<span class="ff4">,</span>加载电力功率负荷数据<span class="ff4">;</span>然后<span class="ff4">,</span>构建滑动窗口</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">输入结构<span class="ff4">;</span>接着<span class="ff4">,</span>构建<span class="_ _0"> </span><span class="ff1">BiLstm<span class="_ _1"> </span></span>模型并利用<span class="_ _0"> </span><span class="ff1">INGO<span class="_ _1"> </span></span>算法进行超参数优化<span class="ff4">;</span>最后<span class="ff4">,</span>对优化后的模型进行</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">训练和测试<span class="ff3">。</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">五<span class="ff3">、</span>实验结果与分析</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">不做任何优化的<span class="_ _0"> </span></span>BiLstm<span class="_ _1"> </span><span class="ff2">模型效果如下<span class="ff4">(</span>此处以具体数据为准<span class="ff4">)<span class="ff3">。</span></span></span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha