基于MCCA和深度学习的稻叶病图像识别系统:Matlab程序,包含界面操作及多算法集成操作指南与视频演示,深度学习稻叶病图像识别系统Matlab程序包含app界面,包含可单独运行的程序自带测试图片
资源内容介绍
基于MCCA和深度学习的稻叶病图像识别系统:Matlab程序,包含界面操作及多算法集成操作指南与视频演示,深度学习稻叶病图像识别系统Matlab程序包含app界面,包含可单独运行的程序自带测试图片,涉及的算法包括:MCCA多视图典型相关分析特征融合,CNN、SVM图像分类。程序经过多次测试,包成功运行,附带运行操作视频。程序。,核心关键词:深度学习; 稻叶病图像识别; Matlab程序; app界面; 特征融合; 测试图片; MCCA多视图典型相关分析; CNN图像分类; SVM图像分类; 包成功运行。,"深度学习稻叶病图像识别系统Matlab程序:融合多算法及自测试操作视频" <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90340308/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90340308/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">深度学习稻叶病图像识别系统<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _1"> </span></span>程序开发</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着人工智能和深度学习技术的飞速发展<span class="ff4">,</span>图像识别技术在农业领域的应用越来越广泛<span class="ff3">。</span>稻叶病是农</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">作物生产中常见的一种病害<span class="ff4">,</span>其危害程度对农作物产量和品质产生严重影响<span class="ff3">。</span>因此<span class="ff4">,</span>开发一种能够准</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">确<span class="ff3">、</span>快速识别稻叶病图像的智能系统<span class="ff4">,</span>对于提高农业生产效率和农作物质量具有重要意义<span class="ff3">。</span>本文将介</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">绍一种基于<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _1"> </span></span>开发的深度学习稻叶病图像识别系统<span class="ff3">。</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>系统概述</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">本系统采用<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _1"> </span></span>作为开发平台<span class="ff4">,</span>结合深度学习算法<span class="ff4">,</span>通过图像处理和机器学习技术<span class="ff4">,</span>实现对稻叶</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">病图像的自动识别<span class="ff3">。</span>系统包含一个<span class="_ _0"> </span><span class="ff2">app<span class="_ _1"> </span></span>界面<span class="ff4">,</span>可以方便用户进行操作<span class="ff4">;</span>同时<span class="ff4">,</span>系统还包含一个可单独</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">运行的程序<span class="ff4">,</span>用户可以将其导出到其他设备上使用<span class="ff3">。</span>此外<span class="ff4">,</span>系统自带测试图片<span class="ff4">,</span>便于用户进行性能测</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">试<span class="ff3">。</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>算法介绍</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span>MCCA<span class="_ _1"> </span><span class="ff1">多视图典型相关分析特征融合</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">MCCA<span class="_ _1"> </span><span class="ff1">是一种多视图特征融合方法<span class="ff4">,</span>可以有效地提取图像中的多种特征信息<span class="ff3">。</span>在本系统中<span class="ff4">,</span>我们采用</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">MCCA<span class="_ _1"> </span><span class="ff1">算法对稻叶病图像进行特征提取<span class="ff4">,</span>从而获得更加丰富的图像信息<span class="ff3">。</span></span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>CNN<span class="ff3">、</span>SVM<span class="_ _1"> </span><span class="ff1">图像分类</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">CNN<span class="ff4">(<span class="ff1">卷积神经网络</span>)<span class="ff1">和<span class="_ _0"> </span></span></span>SVM<span class="ff4">(<span class="ff1">支持向量机</span>)<span class="ff1">是两种常用的图像分类算法<span class="ff3">。</span>在本系统中</span>,<span class="ff1">我们采用</span></span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">CNN<span class="_ _1"> </span><span class="ff1">和<span class="_ _0"> </span></span>SVM<span class="_ _1"> </span><span class="ff1">对提取的特征进行分类<span class="ff4">,</span>从而实现稻叶病图像的识别<span class="ff3">。</span></span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、</span>程序开发</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span>app<span class="_ _1"> </span><span class="ff1">界面设计</span></div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">本系统的<span class="_ _0"> </span><span class="ff2">app<span class="_ _1"> </span></span>界面采用<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _1"> </span></span>自带的<span class="_ _0"> </span><span class="ff2">GUIDE<span class="_ _1"> </span></span>或<span class="_ _0"> </span><span class="ff2">App Designer<span class="_ _1"> </span></span>工具进行设计<span class="ff3">。</span>界面包含图像显</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">示区域<span class="ff3">、</span>控制按钮等元素<span class="ff4">,</span>方便用户进行操作<span class="ff3">。</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">程序编写</span></div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">程序采用<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _1"> </span></span>编程语言进行编写<span class="ff4">,</span>包括图像读取<span class="ff3">、</span>预处理<span class="ff3">、</span>特征提取<span class="ff3">、</span>分类识别等模块<span class="ff3">。</span>其中<span class="ff4">,</span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">特征提取和分类识别模块采用深度学习算法进行实现<span class="ff3">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>