"Matlab实现LMS与NLMS算法:降噪、隔振算法及频谱分析,可替换为Excel数据处理与ppt公式详细推导",Matlab代码LMS NLMS算法降噪 隔振算法,外加原信号以及误差信号的频谱分析
资源内容介绍
"Matlab实现LMS与NLMS算法:降噪、隔振算法及频谱分析,可替换为Excel数据处理与ppt公式详细推导",Matlab代码LMS NLMS算法降噪 隔振算法,外加原信号以及误差信号的频谱分析可替为自己的Excel数据带ppt公式详细推导,关键词:Matlab代码; LMS算法; NLMS算法; 降噪; 隔振算法; 频谱分析; Excel数据; 公式详细推导。,"LMS与NLMS算法在降噪与隔振中的应用:频谱分析及其Excel数据实现" <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90341125/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90341125/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**LMS<span class="_ _0"> </span><span class="ff2">与<span class="_ _1"> </span></span>NLMS<span class="_ _0"> </span><span class="ff2">算法在降噪和隔振中的<span class="_ _1"> </span></span>Matlab<span class="_ _0"> </span><span class="ff2">实现与频谱分析</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">在信号处理领域<span class="ff4">,<span class="ff1">LMS</span>(</span>最小均方<span class="ff4">)</span>和<span class="_ _1"> </span><span class="ff1">NLMS<span class="ff4">(</span></span>归一化最小均方<span class="ff4">)</span>算法被广泛用于降噪和隔振问题中<span class="ff3">。</span></div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">本文将首先阐述这些算法的基本概念和理论基础<span class="ff4">,</span>接着利用<span class="_ _1"> </span><span class="ff1">Matlab<span class="_ _0"> </span></span>平台<span class="ff4">,</span>给出代码实例实现<span class="ff4">,</span>并且</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">展示原始信号与误差信号的频谱分析<span class="ff3">。</span>此外<span class="ff4">,</span>我们还可能以实际的数据为基础<span class="ff4">,</span>例如从<span class="_ _1"> </span><span class="ff1">Excel<span class="_ _0"> </span></span>文件中</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">读取数据进行分析<span class="ff3">。</span>最后<span class="ff4">,</span>将详细推导<span class="_ _1"> </span><span class="ff1">ppt<span class="_ _0"> </span></span>公式以解释算法的核心思想<span class="ff3">。</span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、<span class="ff1">LMS<span class="_ _0"> </span></span></span>与<span class="_ _1"> </span><span class="ff1">NLMS<span class="_ _0"> </span></span>算法基础</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span>LMS<span class="_ _0"> </span><span class="ff2">算法原理<span class="ff4">:</span></span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">LMS<span class="_ _0"> </span><span class="ff2">算法是一种自适应滤波器算法<span class="ff4">,</span>其核心思想是不断调整滤波器的系数<span class="ff4">,</span>使得滤波器输出与期望信</span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">号之间的均方误差最小<span class="ff3">。</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>NLMS<span class="_ _0"> </span><span class="ff2">算法原理<span class="ff4">:</span></span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">NLMS<span class="_ _0"> </span><span class="ff2">算法是<span class="_ _1"> </span></span>LMS<span class="_ _0"> </span><span class="ff2">算法的一种改进版本<span class="ff4">,</span>其区别在于加入了归一化因子<span class="ff4">,</span>可以加快收敛速度并提高稳</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">定性<span class="ff3">。</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、<span class="ff1">Matlab<span class="_ _0"> </span></span></span>代码实现</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">以下是<span class="_ _1"> </span><span class="ff1">LMS<span class="_ _0"> </span></span>和<span class="_ _1"> </span><span class="ff1">NLMS<span class="_ _0"> </span></span>算法在<span class="_ _1"> </span><span class="ff1">Matlab<span class="_ _0"> </span></span>中的基本实现框架<span class="ff3">。</span>为简单起见<span class="ff4">,</span>我们仅提供伪代码<span class="ff4">:</span></div><div class="t m0 x1 h3 y10 ff1 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">% <span class="ff2">初始化参数</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">N = <span class="ff2">长度</span>(<span class="ff2">期望信号</span>); % <span class="ff2">信号长度</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">M = <span class="ff2">滤波器阶数</span>; % <span class="ff2">滤波器阶数</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">d = <span class="ff2">期望信号</span>; % <span class="ff2">原始降噪信号或隔振期望信号</span></div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">n = 0; % <span class="ff2">迭代次数初始化</span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">w = randn(M, 1); % <span class="ff2">随机初始化滤波器权重</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">% LMS<span class="_ _0"> </span><span class="ff2">算法实现</span></div><div class="t m0 x1 h3 y18 ff1 fs0 fc0 sc0 ls0 ws0">for n = 1:N</div><div class="t m0 x2 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">x = windowed_signal(d, n, M); % <span class="ff2">取窗口内的信号作为输入向量<span class="_ _1"> </span></span>x</div><div class="t m0 x2 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">y_pred = w' * x; % <span class="ff2">预测输出</span></div><div class="t m0 x2 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">e = d(n) - y_pred; % <span class="ff2">计算误差信号<span class="_ _1"> </span></span>e</div><div class="t m0 x2 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">w = w + mu * e * x; % <span class="ff2">更新滤波器权重<span class="ff4">,</span></span>mu<span class="_ _0"> </span><span class="ff2">为步长因子</span></div><div class="t m0 x1 h3 y1d ff1 fs0 fc0 sc0 ls0 ws0">end</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">% NLMS<span class="_ _0"> </span><span class="ff2">算法实现类似<span class="ff4">,</span>只是加入了归一化因子</span>||x||^2<span class="_ _0"> </span><span class="ff2">的修正<span class="ff3">。</span></span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>