一阶自抗扰仿真模型对比:PI控制器、一阶线性与非线性自抗扰控制器的性能分析与应用实践-基于Simulink的Matlab2021b及以上版本实现,基于一阶自抗扰仿真模型的控制性能对比研究:Simul
资源内容介绍
一阶自抗扰仿真模型对比:PI控制器、一阶线性与非线性自抗扰控制器的性能分析与应用实践——基于Simulink的Matlab2021b及以上版本实现,基于一阶自抗扰仿真模型的控制性能对比研究:Simulink 搭建及 MATLAB 2021b 版本适用,一阶自抗扰仿真模型,采用 simulink搭建,模型中包括 PI 控制器,一阶线性自抗扰控制器,一阶非线性自抗扰控制器,通过仿真对比以上控制器的控制性能,matlab2021b 及以上版本适用,一阶自抗扰仿真模型; Simulink搭建; PI控制器; 一阶线性自抗扰控制器; 一阶非线性自抗扰控制器; 仿真对比; 控制性能; Matlab2021b及以上版本。,一阶自抗扰仿真模型:Simulink搭建与控制器性能对比 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90374926/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90374926/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">一阶自抗扰仿真模型构建与<span class="_ _0"> </span></span>PI<span class="_ _1"> </span><span class="ff2">控制器<span class="ff3">、</span>自抗扰控制器的性能对比分析</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">在现代控制系统中<span class="ff4">,</span>自抗扰控制器以其卓越的鲁棒性和适应性在各种复杂系统中得到了广泛应用<span class="ff3">。</span>本</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">文将围绕一阶自抗扰仿真模型的构建<span class="ff4">,</span>采用<span class="_ _0"> </span><span class="ff1">MATLAB/Simulink<span class="_ _1"> </span></span>软件进行搭建<span class="ff4">,</span>并对比<span class="_ _0"> </span><span class="ff1">PI<span class="_ _1"> </span></span>控制器<span class="ff3">、</span></div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">一阶线性自抗扰控制器和一阶非线性自抗扰控制器的控制性能<span class="ff3">。</span></div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>一阶自抗扰仿真模型构建</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">模型设定</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">为了进行对比分析<span class="ff4">,</span>我们设定一个一阶系统作为研究对象<span class="ff4">,</span>该系统具有明确的输入和输出关系<span class="ff3">。</span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>Simulink<span class="_ _1"> </span><span class="ff2">搭建</span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">在<span class="_ _0"> </span><span class="ff1">MATLAB 2021b<span class="_ _1"> </span></span>及以上版本中<span class="ff4">,</span>利用<span class="_ _0"> </span><span class="ff1">Simulink<span class="_ _1"> </span></span>搭建一阶自抗扰仿真模型<span class="ff3">。</span>模型中包括系统模块</div><div class="t m0 x1 h2 yb ff3 fs0 fc0 sc0 ls0 ws0">、<span class="ff1">PI<span class="_ _1"> </span><span class="ff2">控制器模块</span></span>、<span class="ff2">一阶线性自抗扰控制器模块以及一阶非线性自抗扰控制器模块</span>。</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>控制器介绍</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span>PI<span class="_ _1"> </span><span class="ff2">控制器</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">PI<span class="ff4">(<span class="ff2">比例</span></span>-<span class="ff2">积分<span class="ff4">)</span>控制器是一种线性控制器<span class="ff4">,</span>通过比例和积分操作来调整系统的输出<span class="ff4">,</span>以减小误差<span class="ff3">。</span></span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff2">一阶线性自抗扰控制器</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">一阶线性自抗扰控制器结合了传统<span class="_ _0"> </span><span class="ff1">PID<span class="_ _1"> </span></span>控制和现代控制理论中的自抗扰思想<span class="ff4">,</span>具有较好的鲁棒性和适</div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">应性<span class="ff3">。</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff2">一阶非线性自抗扰控制器</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">一阶非线性自抗扰控制器在传统自抗扰控制的基础上引入了非线性环节<span class="ff4">,</span>能够更好地处理系统中的非</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">线性问题<span class="ff3">。</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、</span>仿真与性能对比</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">在<span class="_ _0"> </span><span class="ff1">Simulink<span class="_ _1"> </span></span>中分别搭建以上三种控制器的仿真模型<span class="ff4">,</span>并对它们进行性能测试<span class="ff3">。</span>我们可以通过对比以</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">下几个方面来评估控制器的性能<span class="ff4">:</span></div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">稳定性<span class="ff4">:</span>通过观察系统在受到外部干扰时的响应情况<span class="ff4">,</span>评估控制器的稳定性<span class="ff3">。</span></span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff2">响应速度<span class="ff4">:</span>比较不同控制器在系统受到干扰后的响应速度<span class="ff4">,</span>以及达到稳定状态所需的时间<span class="ff3">。</span></span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff2">误差<span class="ff4">:</span>通过比较系统输出与期望输出之间的误差<span class="ff4">,</span>评估控制器的控制精度<span class="ff3">。</span></span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>