基于MATLAB的准Z源NpC三电平逆变器拓扑创新研究:SVPWM调制与中性点平衡算法的应用及线电压相电压波形分析,基于MATLAB的准Z源NpC三电平逆变器设计与实现:采用SVPWM与中性点平衡算法
资源内容介绍
基于MATLAB的准Z源NpC三电平逆变器拓扑创新研究:SVPWM调制与中性点平衡算法的应用及线电压相电压波形分析,基于MATLAB的准Z源NpC三电平逆变器设计与实现:采用SVPWM与中性点平衡算法的创新性研究及其电压波形分析,基于MATLAB搭建的准Z源NpC三电平逆变器拓扑,利用SVPWM调制算法,加入了中性点平衡算法,有创新,给出了线电压和相电压波形。,MATLAB; 准Z源NpC三电平逆变器; SVPWM调制算法; 中性点平衡算法; 创新; 线电压波形; 相电压波形; 拓扑结构。,基于SVPWM的准Z源NpC三电平逆变器拓扑创新研究 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90373211/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90373211/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">好的<span class="ff2">,</span>基于您提供的信息和要求<span class="ff2">,</span>我将为您撰写一篇关于基于扰动观测器的伺服系统摩擦补偿的</div><div class="t m0 x1 h2 y2 ff3 fs0 fc0 sc0 ls0 ws0">Matlab<span class="_ _0"> </span><span class="ff1">仿真文章<span class="ff4">。</span>文章将包含模型简介<span class="ff4">、</span>算法简介<span class="ff4">、</span>仿真实现和结果分析等内容<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>模型简介</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">本仿真模型是基于扰动观测器的伺服系统摩擦补偿模型<span class="ff2">,</span>仿真环境基于<span class="_ _1"> </span><span class="ff3">Matlab<span class="_ _0"> </span></span>搭建<span class="ff4">。</span>模型主要围绕</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">永磁同步电机速度<span class="ff4">、</span>电流双闭环控制结构进行开发<span class="ff2">,</span>双环均采用了<span class="_ _1"> </span><span class="ff3">PI<span class="_ _0"> </span></span>控制<span class="ff2">,</span>且<span class="_ _1"> </span><span class="ff3">PI<span class="_ _0"> </span></span>参数已经调优<span class="ff4">。</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">模型中主要包含了抗饱和<span class="_ _1"> </span><span class="ff3">PI<span class="_ _0"> </span></span>控制器<span class="ff4">、</span>摩擦力模型<span class="ff4">、</span>扰动观测器<span class="ff4">、</span>坐标变换<span class="ff4">、<span class="ff3">SVPWM<span class="ff2">(</span></span></span>空间矢量脉宽</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">调制<span class="ff2">)<span class="ff4">、</span></span>逆变器以及永磁同步电机模块等<span class="ff4">。</span>其中<span class="ff2">,</span>抗饱和<span class="_ _1"> </span><span class="ff3">PI<span class="_ _0"> </span></span>控制器<span class="ff4">、</span>摩擦力模型<span class="ff4">、</span>扰动观测器以及</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">坐标变换等模块均采用<span class="_ _1"> </span><span class="ff3">Matlab Function<span class="_ _0"> </span></span>进行编程实现<span class="ff2">,</span>这种实现方式与<span class="_ _1"> </span><span class="ff3">C<span class="_ _0"> </span></span>语言编程较为相似<span class="ff2">,</span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">便于实物移植<span class="ff4">。</span></div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">模型采用离散化仿真<span class="ff2">,</span>这种方式更能反映实际数字控制系统的特性<span class="ff4">。</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>算法简介</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">在伺服系统中<span class="ff2">,</span>由于摩擦力的存在<span class="ff2">,</span>会降低系统响应速度<span class="ff2">,</span>甚至影响系统的稳定性<span class="ff4">。</span>因此<span class="ff2">,</span>对摩擦力</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">进行补偿是非常必要的<span class="ff4">。</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">本仿真通过引入<span class="_ _1"> </span><span class="ff3">LuGre<span class="_ _0"> </span></span>摩擦力模型来对摩擦力进行建模<span class="ff4">。<span class="ff3">LuGre<span class="_ _0"> </span></span></span>模型是一种常用的摩擦模型<span class="ff2">,</span>能够</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">较好地描述摩擦力的动态特性<span class="ff4">。</span>通过扰动观测器<span class="ff2">,</span>我们可以实时估计系统的扰动<span class="ff2">,</span>其中包括由摩擦力</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">引起的扰动<span class="ff4">。</span>然后<span class="ff2">,</span>通过抗饱和<span class="_ _1"> </span><span class="ff3">PI<span class="_ _0"> </span></span>控制器对估计出的扰动进行补偿<span class="ff2">,</span>从而提高系统的性能<span class="ff4">。</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">坐标变换是永磁同步电机控制中的关键部分<span class="ff2">,</span>通过坐标变换可以实现电机的解耦控制<span class="ff4">。<span class="ff3">SVPWM<span class="_ _0"> </span></span></span>模块用</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">于生成<span class="_ _1"> </span><span class="ff3">PWM<span class="_ _0"> </span></span>波形<span class="ff2">,</span>以驱动逆变器工作<span class="ff2">,</span>从而控制电机的运行<span class="ff4">。</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、</span>仿真实现</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">在本仿真中<span class="ff2">,</span>我们首先建立了永磁同步电机的数学模型<span class="ff2">,</span>包括电机本体<span class="ff4">、</span>逆变器以及<span class="_ _1"> </span><span class="ff3">LuGre<span class="_ _0"> </span></span>摩擦力模</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">型<span class="ff4">。</span>然后<span class="ff2">,</span>我们实现了基于扰动观测器的摩擦补偿算法<span class="ff2">,</span>包括抗饱和<span class="_ _1"> </span><span class="ff3">PI<span class="_ _0"> </span></span>控制器<span class="ff4">、</span>坐标变换以及</div><div class="t m0 x1 h2 y16 ff3 fs0 fc0 sc0 ls0 ws0">SVPWM<span class="_ _0"> </span><span class="ff1">模块<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">在仿真过程中<span class="ff2">,</span>我们设定了不同的工况<span class="ff2">,</span>以验证算法的效能<span class="ff4">。</span>通过改变电机的运行速度和负载<span class="ff2">,</span>我们</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">可以观察摩擦补偿算法对系统性能的影响<span class="ff4">。</span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff4">、</span>结果分析</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">通过仿真实验<span class="ff2">,</span>我们得到了不同工况下的系统响应曲线<span class="ff4">。</span>对比未加摩擦补偿的系统<span class="ff2">,</span>我们可以发现<span class="ff2">,</span></div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">加入摩擦补偿后<span class="ff2">,</span>系统的响应速度更快<span class="ff2">,</span>稳定性更好<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>