多策略融合:MWOA鲸鱼优化算法与其他最新算法比较的革新与效率改进案例研究,《基于多策略改进的鲸鱼优化算法(MWOA)的最新研究与应用-与三种变体及2024年新算法的比较研究》,多策略改进的鲸鱼优化
资源内容介绍
多策略融合:MWOA鲸鱼优化算法与其他最新算法比较的革新与效率改进案例研究,《基于多策略改进的鲸鱼优化算法(MWOA)的最新研究与应用——与三种变体及2024年新算法的比较研究》,多策略改进的鲸鱼优化算法(MWOA),与其他三种变体和几种2024最新算法比较,策略都是很新颖的策略,可以直接写了发文章,并且没有增加复杂度上改进效果,MWOA;变体算法;2024最新算法;策略新颖;复杂度未增加;改进效果显著,"多策略改进MWOA算法:与多种变体及2024新算法比较展示优越性" <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90373127/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90373127/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">多策略改进的鲸鱼优化算法<span class="ff2">(<span class="ff3">MWOA</span>)</span>与前沿算法的比较研究</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">在当代优化问题中<span class="ff2">,</span>智能算法越来越受到关注<span class="ff2">,</span>它们具有解决复杂问题的潜力<span class="ff4">。</span>其中<span class="ff2">,</span>鲸鱼优化算法</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff3">WOA</span>)<span class="ff1">作为一种新兴的群智能优化算法</span>,<span class="ff1">已经展现出其强大的性能<span class="ff4">。</span>本文将介绍一种多策略改进的</span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">鲸鱼优化算法<span class="ff2">(<span class="ff3">MWOA</span>),</span>并与其他三种变体以及几种<span class="_ _0"> </span><span class="ff3">2024<span class="_ _1"> </span></span>年最新的算法进行比较<span class="ff2">,</span>以展示其新颖的</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">策略和改进效果<span class="ff4">。</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>鲸鱼优化算法<span class="ff2">(<span class="ff3">WOA</span>)</span>概述</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">鲸鱼优化算法是一种基于自然界的鲸鱼群游行为而设计的优化算法<span class="ff4">。</span>它通过模拟鲸鱼的游动<span class="ff4">、</span>捕食等</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">行为<span class="ff2">,</span>在搜索空间中寻找最优解<span class="ff4">。</span>然而<span class="ff2">,</span>原始的<span class="_ _0"> </span><span class="ff3">WOA<span class="_ _1"> </span></span>算法在某些复杂问题上可能存在收敛速度慢<span class="ff4">、</span>易</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">陷入局部最优等问题<span class="ff4">。</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、</span>多策略改进的鲸鱼优化算法<span class="ff2">(<span class="ff3">MWOA</span>)</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">为了解决上述问题<span class="ff2">,</span>我们提出了一种多策略改进的鲸鱼优化算法<span class="ff2">(<span class="ff3">MWOA</span>)<span class="ff4">。</span></span>该算法结合了多种新颖的</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">策略<span class="ff2">,</span>旨在提高算法的搜索能力和收敛速度<span class="ff2">,</span>同时不增加算法的复杂度<span class="ff4">。</span>具体策略包括<span class="ff2">:</span></div><div class="t m0 x1 h2 ye ff3 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">动态调整搜索范围策略<span class="ff2">:</span>根据搜索过程和目标函数的特性<span class="ff2">,</span>动态调整搜索范围<span class="ff2">,</span>以提高搜索效率</span></div><div class="t m0 x2 h3 yf ff4 fs0 fc0 sc0 ls0 ws0">。</div><div class="t m0 x1 h2 y10 ff3 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">多种游动模式策略<span class="ff2">:</span>引入多种鲸鱼的游动模式<span class="ff2">,</span>使算法在搜索过程中具有更强的灵活性<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y11 ff3 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff1">局部搜索与全局搜索结合策略<span class="ff2">:</span>在搜索过程中<span class="ff2">,</span>结合局部搜索和全局搜索<span class="ff2">,</span>以平衡算法的局部寻</span></div><div class="t m0 x2 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">优能力和全局寻优能力<span class="ff4">。</span></div><div class="t m0 x1 h2 y13 ff3 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _2"> </span><span class="ff1">自适应学习策略<span class="ff2">:</span>根据历史搜索信息<span class="ff2">,</span>自适应地调整算法参数<span class="ff2">,</span>以提高算法的适应性和鲁棒性<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff4">、</span>与其他算法的比较</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">为了验证<span class="_ _0"> </span><span class="ff3">MWOA<span class="_ _1"> </span></span>算法的性能<span class="ff2">,</span>我们将其与其他三种变体的<span class="_ _0"> </span><span class="ff3">WOA<span class="_ _1"> </span></span>算法以及几种<span class="_ _0"> </span><span class="ff3">2024<span class="_ _1"> </span></span>年最新的算法进行</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">比较<span class="ff4">。</span>这些算法包括<span class="ff2">:</span>改进的<span class="_ _0"> </span><span class="ff3">WOA1<span class="ff4">、</span></span>改进的<span class="_ _0"> </span><span class="ff3">WOA2<span class="ff4">、</span></span>改进的<span class="_ _0"> </span><span class="ff3">WOA3<span class="_ _1"> </span></span>以及最新的一些智能优化算法如遗</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">传算法<span class="ff4">、</span>蚁群算法等<span class="ff4">。</span></div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">我们选择了多个典型的测试函数进行实验<span class="ff2">,</span>包括单峰函数<span class="ff4">、</span>多峰函数以及一些复杂的实际问题<span class="ff4">。</span>实验</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">结果表明<span class="ff2">,<span class="ff3">MWOA<span class="_ _1"> </span></span></span>算法在大多数测试函数上均取得了较好的性能<span class="ff2">,</span>其收敛速度和寻优能力均有所提高</div><div class="t m0 x1 h2 y1a ff4 fs0 fc0 sc0 ls0 ws0">。<span class="ff1">与其他算法相比<span class="ff2">,<span class="ff3">MWOA<span class="_ _1"> </span></span></span>算法在解决复杂问题时具有更高的稳定性和鲁棒性</span>。</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">五<span class="ff4">、</span>结论</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>