内置式永磁同步电机MRAS自适应参数辨识模型:自建模参数突变辨识实验效果研究及算法框架展示,"内置永磁同步电机MRAS自适应参数辨识模型:自建模法下的参数突变辨识实验与效果分析",内置式永磁同步电机M
资源内容介绍
内置式永磁同步电机MRAS自适应参数辨识模型:自建模参数突变辨识实验效果研究及算法框架展示,"内置永磁同步电机MRAS自适应参数辨识模型:自建模法下的参数突变辨识实验与效果分析",内置式永磁同步电机MRAS自适应参数辨识模型,电机模型为自建,可以做参数突变辨识实验,效果较好,图一为算法框架,图二-四为dq轴电感与定子电阻突变辨识曲线。,核心关键词:内置式永磁同步电机; MRAS自适应参数辨识模型; 参数突变辨识实验; 算法框架; dq轴电感; 定子电阻突变辨识曲线。,"内置永磁同步电机MRAS参数辨识模型:高效识别参数突变" <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90373018/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90373018/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">内置式永磁同步电机<span class="_ _0"> </span></span>MRAS<span class="_ _1"> </span><span class="ff2">自适应参数辨识模型的技术解析与实验效果</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">随着工业自动化和智能制造的快速发展<span class="ff4">,</span>电机作为核心动力设备<span class="ff4">,</span>其性能的优化与控制显得尤为重要</div><div class="t m0 x1 h2 y4 ff3 fs0 fc0 sc0 ls0 ws0">。<span class="ff2">内置式永磁同步电机<span class="ff4">(<span class="ff1">IPMSM</span>,<span class="ff1">Interior Permanent Magnet Synchronous Motor</span>)</span>以其</span></div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">高效率<span class="ff3">、</span>高转矩密度和低噪音等优点<span class="ff4">,</span>在许多领域得到了广泛应用<span class="ff3">。</span>然而<span class="ff4">,</span>电机控制性能的优劣很大</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">程度上取决于其参数辨识的准确性<span class="ff3">。</span>本文将详细解析一种基于<span class="_ _0"> </span><span class="ff1">MRAS<span class="ff4">(</span>Model Reference </span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">Adaptive System<span class="ff4">)<span class="ff2">的内置式永磁同步电机自适应参数辨识模型</span>,<span class="ff2">该模型为自建模型</span>,<span class="ff2">可进行参数</span></span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">突变辨识实验<span class="ff4">,</span>并取得较好的效果<span class="ff3">。</span></div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>内置式永磁同步电机概述</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">内置式永磁同步电机是一种具有高性能<span class="ff3">、</span>高效率的电机类型<span class="ff3">。</span>其结构特点在于转子内置了永磁体<span class="ff4">,</span>无</div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">需外部供电即可产生磁场<span class="ff3">。</span>这种结构使得<span class="_ _0"> </span><span class="ff1">IPMSM<span class="_ _1"> </span></span>在许多应用中表现出色<span class="ff4">,</span>尤其是在需要高转矩密度的</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">场合<span class="ff3">。</span>然而<span class="ff4">,</span>由于电机内部复杂的电磁关系和机械结构<span class="ff4">,</span>其参数辨识成为了一个挑战<span class="ff3">。</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、<span class="ff1">MRAS<span class="_ _1"> </span></span></span>自适应参数辨识模型</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">MRAS<span class="_ _1"> </span><span class="ff2">是一种基于参考模型的自适应控制系统<span class="ff3">。</span>在内置式永磁同步电机的参数辨识中<span class="ff4">,</span></span>MRAS<span class="_ _1"> </span><span class="ff2">通过比较</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">电机实际输出与参考模型的预测输出<span class="ff4">,</span>自适应地调整电机参数<span class="ff3">。</span>该模型为自建模型<span class="ff4">,</span>能够针对<span class="_ _0"> </span><span class="ff1">IPMSM</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">的特定特性进行优化<span class="ff4">,</span>从而更准确地辨识电机的参数<span class="ff3">。</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、</span>算法框架与实施过程</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">算法框架如图一所示<span class="ff4">,</span>展示了<span class="_ _0"> </span><span class="ff1">MRAS<span class="_ _1"> </span></span>自适应参数辨识模型的整体架构<span class="ff3">。</span>该模型包括参考模型<span class="ff3">、</span>可调模</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">型<span class="ff3">、</span>自适应律和参数估计器等部分<span class="ff3">。</span>在实际应用中<span class="ff4">,</span>通过采集电机的电流<span class="ff3">、</span>电压等信号<span class="ff4">,</span>结合电机的</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>