文章解读及MATLAB代码复现:梯级水光互补系统短期优化调度模型的研究与实践,基于光伏出力不确定性的梯级水光互补系统短期优化调度模型及Matlab代码复现研究报告,1023-(文章复现)梯级水光互补系
资源内容介绍
文章解读及MATLAB代码复现:梯级水光互补系统短期优化调度模型的研究与实践,基于光伏出力不确定性的梯级水光互补系统短期优化调度模型及Matlab代码复现研究报告,1023-(文章复现)梯级水光互补系统最大化可消纳电量期望短期优化调度模型matlab代码参考资料《梯级水光互补系统最大化可消纳电量期望短期优化调度模型》文中考虑光伏出力不确定性,以整体可消纳电量期望最大为目标,提出了梯级水光互补系统的短期优化调度模型。模型求解方面,采用分段线性逼近、引入0-1整数变量、发电水头离散等线性化方法和建模技巧处理模型中的非线性约束,将原模型转为混合整数线性规划问题。使用matlab+yalmip+cplex求解器实现代码逻辑清晰,注释详细本资源包含对文献的详细解读以及完整matlab代码复现邮箱,后请及时给出邮箱。,关键词:梯级水光互补系统;可消纳电量期望;短期优化调度模型;非线性约束;混合整数线性规划;Matlab代码复现。,MATLAB代码复现:梯级水光互补系统短期优化调度模型求解 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90373117/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90373117/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">以下是一篇基于你提供的主题和关键词撰写的文章<span class="ff2">。</span>注意<span class="ff3">,</span>因为实际编写<span class="_ _0"> </span><span class="ff4">Matlab<span class="_ _1"> </span></span>代码涉及编程和具</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">体的算法细节<span class="ff3">,</span>为了篇幅限制和专注度的原因<span class="ff3">,</span>我将在下面详细解释模型的原理<span class="ff3">,</span>并提供一个高层次</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">的代码逻辑概述<span class="ff2">。</span>若需要具体的<span class="_ _0"> </span><span class="ff4">Matlab<span class="_ _1"> </span></span>代码实现<span class="ff3">,</span>请提供您的邮箱<span class="ff3">,</span>以便我可以发送完整的代码资</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">源<span class="ff2">。</span></div><div class="t m0 x1 h3 y5 ff4 fs0 fc0 sc0 ls0 ws0">---</div><div class="t m0 x1 h2 y6 ff4 fs0 fc0 sc0 ls0 ws0">**<span class="ff1">梯级水光互补系统最大化可消纳电量期望短期优化调度模型<span class="ff3">(</span></span>Matlab<span class="_ _1"> </span><span class="ff1">代码概述<span class="ff3">)</span></span>**</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff2">、</span>引言</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">在可再生能源日益重要的今天<span class="ff3">,</span>梯级水光互补系统作为一种结合了水力和光伏发电的系统<span class="ff3">,</span>其优化调</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">度对于提高能源利用效率和系统稳定性至关重要<span class="ff2">。</span>本文将介绍一个基于<span class="_ _0"> </span><span class="ff4">Matlab<span class="_ _1"> </span></span>的梯级水光互补系统</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">短期优化调度模型<span class="ff3">,</span>该模型主要考虑光伏出力的不确定性<span class="ff3">,</span>并以整体可消纳电量期望最大为目标进行</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">优化<span class="ff2">。</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff2">、</span>模型概述</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">该模型采用分段线性逼近<span class="ff2">、</span>引入<span class="_ _0"> </span><span class="ff4">0-1<span class="_ _1"> </span></span>整数变量<span class="ff2">、</span>发电水头离散等线性化方法和建模技巧处理模型中的</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">非线性约束<span class="ff3">,</span>将原模型转换为混合整数线性规划问题<span class="ff2">。</span>这样处理的好处是能够利用现有的求解器如</div><div class="t m0 x1 h2 yf ff4 fs0 fc0 sc0 ls0 ws0">cplex<span class="_ _1"> </span><span class="ff1">进行高效求解<span class="ff2">。</span></span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff2">、</span>模型求解</div><div class="t m0 x1 h2 y11 ff4 fs0 fc0 sc0 ls0 ws0">Matlab<span class="_ _1"> </span><span class="ff1">作为主要的建模和求解平台<span class="ff3">,</span>结合了<span class="_ _0"> </span></span>yalmip<span class="_ _1"> </span><span class="ff1">工具箱和<span class="_ _0"> </span></span>cplex<span class="_ _1"> </span><span class="ff1">求解器<span class="ff2">。</span></span>yalmip<span class="_ _1"> </span><span class="ff1">提供了一个</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">高级的建模语言<span class="ff3">,</span>使得我们可以方便地描述和解决优化问题<span class="ff2">。</span>而<span class="_ _0"> </span><span class="ff4">cplex<span class="_ _1"> </span></span>则是一个强大的线性规划求解</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">器<span class="ff3">,</span>能够高效地解决混合整数线性规划问题<span class="ff2">。</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff2">、</span>代码逻辑概述</div><div class="t m0 x1 h2 y15 ff4 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span>**<span class="ff1">问题定义与数据准备</span>**<span class="ff3">:<span class="ff1">首先</span>,<span class="ff1">需要准备相关的数据</span>,<span class="ff1">包括光伏出力数据<span class="ff2">、</span>水力发电数据<span class="ff2">、</span></span></span></div><div class="t m0 x2 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">电网需求数据等<span class="ff2">。</span>这些数据将被用于描述优化问题中的各种约束和目标函数<span class="ff2">。</span></div><div class="t m0 x1 h2 y17 ff4 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>**<span class="ff1">模型建立</span>**<span class="ff3">:<span class="ff1">使用<span class="_ _0"> </span></span></span>yalmip<span class="_ _1"> </span><span class="ff1">描述优化问题<span class="ff2">。</span>这包括定义决策变量<span class="ff2">、</span>目标函数以及各种约束条</span></div><div class="t m0 x2 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">件<span class="ff2">。</span></div><div class="t m0 x1 h2 y19 ff4 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span>**<span class="ff1">线性化处理</span>**<span class="ff3">:<span class="ff1">对于模型中的非线性部分</span>,<span class="ff1">采用分段线性逼近<span class="ff2">、</span>引入<span class="_ _0"> </span></span></span>0-1<span class="_ _1"> </span><span class="ff1">整数变量等方法进</span></div><div class="t m0 x2 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">行线性化处理<span class="ff3">,</span>使得原问题可以转换为混合整数线性规划问题<span class="ff2">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>