基于自适应神经PD控制器的移动机械手轨迹跟踪研究:主要脚本与结果展示,移动机械手控制系统的自适应神经PD控制器设计与实验验证,移动机械手轨迹跟踪自适应神经PD控制器运行所提出的自适应神经控制器的主要
资源内容介绍
基于自适应神经PD控制器的移动机械手轨迹跟踪研究:主要脚本与结果展示,移动机械手控制系统的自适应神经PD控制器设计与实验验证,移动机械手轨迹跟踪自适应神经PD控制器运行所提出的自适应神经控制器的主要脚本是main_Single_ANN和main_Multilayer_ANN。 比较的控制器在脚本 main_CPID 和 main_PID 中给出。仿真结果在名为“比较结果”的文件夹中给出。 实际实验的结果在名为“实验结果”的文件夹中给出。 请运行 main.m 脚本以获取以图形和表格形式呈现的结果。,核心关键词:移动机械手; 轨迹跟踪; 自适应神经PD控制器; main_Single_ANN; main_Multilayer_ANN; main_CPID; main_PID; 仿真结果; 实验结果; main.m。,基于自适应神经PD控制的移动机械手轨迹跟踪主脚本解析 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90372526/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90372526/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">文章标题<span class="ff2">:</span>移动机械手轨迹跟踪的神经<span class="_ _0"> </span><span class="ff3">PD<span class="_ _1"> </span></span>控制器设计与实验分析</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着机器人技术的不断发展<span class="ff2">,</span>移动机械手的轨迹跟踪技术已经成为了重要的研究领域<span class="ff4">。</span>移动机械手作</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">为一种能够实现高效作业<span class="ff4">、</span>快速反应的重要设备<span class="ff2">,</span>在自动化制造<span class="ff4">、</span>航空制造和精密医疗等各个领域都</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">得到了广泛的应用<span class="ff4">。</span>然而<span class="ff2">,</span>如何实现机械手的精确轨迹跟踪<span class="ff2">,</span>一直是机器人技术领域的重要挑战<span class="ff4">。</span>本</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">文将针对移动机械手轨迹跟踪问题<span class="ff2">,</span>提出一种自适应神经<span class="_ _0"> </span><span class="ff3">PD<span class="_ _1"> </span></span>控制器<span class="ff2">,</span>并通过实验结果进行分析和比</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">较<span class="ff4">。</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>神经<span class="_ _0"> </span><span class="ff3">PD<span class="_ _1"> </span></span>控制器的设计</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">在本文中<span class="ff2">,</span>我们将采用神经网络和<span class="_ _0"> </span><span class="ff3">PD<span class="_ _1"> </span></span>控制器的结合方式<span class="ff2">,</span>设计一种自适应神经<span class="_ _0"> </span><span class="ff3">PD<span class="_ _1"> </span></span>控制器<span class="ff4">。</span>该控制器</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">主要由两个主要脚本实现<span class="ff2">:<span class="ff3">main_Single_ANN<span class="_ _1"> </span></span></span>和<span class="_ _0"> </span><span class="ff3">main_Multilayer_ANN<span class="ff4">。</span></span>其中<span class="ff2">,</span></div><div class="t m0 x1 h2 yb ff3 fs0 fc0 sc0 ls0 ws0">main_Single_ANN<span class="_ _1"> </span><span class="ff1">负责单层神经网络的设计和训练<span class="ff2">,</span>而<span class="_ _0"> </span></span>main_Multilayer_ANN<span class="_ _1"> </span><span class="ff1">则负责多层神经</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">网络的设计和训练<span class="ff4">。</span>这两种神经网络都将被用于实现自适应的<span class="_ _0"> </span><span class="ff3">PD<span class="_ _1"> </span></span>控制策略<span class="ff4">。</span></div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、</span>比较的控制器介绍</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">为了更好地评估我们提出的自适应神经<span class="_ _0"> </span><span class="ff3">PD<span class="_ _1"> </span></span>控制器的性能<span class="ff2">,</span>我们将与传统的<span class="_ _0"> </span><span class="ff3">CPID<span class="_ _1"> </span></span>控制器和常规的</div><div class="t m0 x1 h2 yf ff3 fs0 fc0 sc0 ls0 ws0">PID<span class="_ _1"> </span><span class="ff1">控制器进行比较<span class="ff4">。</span>这两种控制器的脚本分别为<span class="_ _0"> </span></span>main_CPID<span class="_ _1"> </span><span class="ff1">和<span class="_ _0"> </span></span>main_PID<span class="ff4">。<span class="ff1">通过运行这些脚本<span class="ff2">,</span></span></span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">我们可以得到这两种控制器的控制效果<span class="ff4">。</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff4">、</span>仿真与实验结果分析</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">我们通过运行<span class="_ _0"> </span><span class="ff3">main.m<span class="_ _1"> </span></span>脚本<span class="ff2">,</span>得到了各种控制器的仿真结果<span class="ff4">。</span>这些结果以图形和表格的形式呈现<span class="ff2">,</span>并</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">保存在<span class="ff3">“</span>比较结果<span class="ff3">”</span>文件夹中<span class="ff4">。</span>同时<span class="ff2">,</span>我们还进行了实际实验<span class="ff2">,</span>并将实验结果保存在<span class="ff3">“</span>实验结果<span class="ff3">”</span>文件夹</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">中<span class="ff4">。</span></div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">通过比较仿真和实验结果<span class="ff2">,</span>我们可以发现<span class="ff2">,</span>自适应神经<span class="_ _0"> </span><span class="ff3">PD<span class="_ _1"> </span></span>控制器在移动机械手轨迹跟踪方面具有较</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">好的性能<span class="ff4">。</span>与传统的<span class="_ _0"> </span><span class="ff3">CPID<span class="_ _1"> </span></span>控制器和<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器相比<span class="ff2">,</span>神经<span class="_ _0"> </span><span class="ff3">PD<span class="_ _1"> </span></span>控制器能够更好地适应机械手的动力</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">学特性<span class="ff2">,</span>并实现更精确的轨迹跟踪<span class="ff4">。</span>此外<span class="ff2">,</span>神经<span class="_ _0"> </span><span class="ff3">PD<span class="_ _1"> </span></span>控制器还能够根据实际的工作环境和任务需求进</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">行自适应调整<span class="ff2">,</span>提高了机械手的适应性和鲁棒性<span class="ff4">。</span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">五<span class="ff4">、</span>结论</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">本文提出了一种自适应神经<span class="_ _0"> </span><span class="ff3">PD<span class="_ _1"> </span></span>控制器<span class="ff2">,</span>用于实现移动机械手的轨迹跟踪<span class="ff4">。</span>通过与传统的<span class="_ _0"> </span><span class="ff3">CPID<span class="_ _1"> </span></span>控制</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">器和<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器的比较<span class="ff2">,</span>我们发现神经<span class="_ _0"> </span><span class="ff3">PD<span class="_ _1"> </span></span>控制器在轨迹跟踪方面具有更好的性能<span class="ff4">。</span>未来<span class="ff2">,</span>我们将进</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>