光伏粒子群算法扰动结合优化加入了.zip
大小:175.44KB
价格:11积分
下载量:0
评分:
5.0
上传者:yoOzouTuUt
更新日期:2025-09-22

基于粒子群算法与PO扰动相结合的优化策略在光伏MPPT中的应用:加入终止条件与重启功能的研究,基于粒子群算法与PO扰动相结合的优化策略在光伏MPPT中的应用:加入终止条件与重启功能的研究,光伏mppt

资源文件列表(大概)

文件名
大小
1.jpg
43.18KB
2.jpg
117.33KB
3.jpg
48.51KB
光伏粒子群算法扰动结合优化加入了终.html
17.25KB
光伏系统中最大功率点跟踪技术结合粒子群算.txt
2.4KB
光伏系统中最大功率点跟踪技术结合粒子群算法.txt
2.01KB
光伏系统中的算法与粒子群算法结合优化一引言.txt
2.11KB
基于粒子群算法与扰动相结合的优化技.txt
2.14KB
基于粒子群算法与扰动相结合的优化技术研究.doc
2.11KB
基于粒子群算法与扰动相结合的优化技术研究一引言随.txt
1.98KB
基于粒子群算法与扰动相结合的优化技术研究一引言随着.txt
1.99KB
文章标题光伏中基于粒子群算法与扰动的优化策略一.doc
1.84KB
文章标题基于粒子群算法与扰动相.html
16.58KB

资源内容介绍

基于粒子群算法与PO扰动相结合的优化策略在光伏MPPT中的应用:加入终止条件与重启功能的研究,基于粒子群算法与PO扰动相结合的优化策略在光伏MPPT中的应用:加入终止条件与重启功能的研究,光伏mppt,粒子群算法+PO扰动结合优化mppt:加入了终止条件与重启功能先用粒子群算法定位到最优占空比附近,当粒子集中到一定范围,再启用PO扰动进行快速稳定定位最优占空比。可,提供参考文献。,关键词:光伏MPPT;粒子群算法;PO扰动;优化;终止条件;重启功能;占空比。,基于粒子群算法与PO扰动的光伏MPPT优化策略研究
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90371913/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90371913/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">基于粒子群算法与<span class="_ _0"> </span></span>PO<span class="_ _1"> </span><span class="ff2">扰动相结合的优化<span class="_ _0"> </span></span>MPPT<span class="_ _1"> </span><span class="ff2">技术研究</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">随着可再生能源的日益重要<span class="ff4">,</span>光伏发电技术得到了广泛的应用<span class="ff3">。</span>而最大功率点追踪<span class="ff4">(<span class="ff1">MPPT</span>)</span>技术是提</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">高光伏系统效率和性能的关键技术之一<span class="ff3">。</span>为了进一步优化<span class="_ _0"> </span><span class="ff1">MPPT<span class="ff4">,</span></span>本篇文章将探讨使用粒子群算法<span class="ff4">(</span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">PSO<span class="ff4">)<span class="ff2">与<span class="_ _0"> </span></span></span>PO<span class="_ _1"> </span><span class="ff2">扰动相结合的优化策略<span class="ff4">,</span>并在该策略中加入终止条件与重启功能<span class="ff4">,</span>以实现更精确<span class="ff3">、</span>更快速</span></div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">地定位到最优占空比<span class="ff3">。</span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>光伏<span class="_ _0"> </span><span class="ff1">MPPT<span class="_ _1"> </span></span>技术概述</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">MPPT<span class="_ _1"> </span><span class="ff2">技术是光伏系统中用于寻找光伏电池板最大功率点的关键技术<span class="ff3">。</span>传统的<span class="_ _0"> </span></span>MPPT<span class="_ _1"> </span><span class="ff2">方法如恒定电压</span></div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">法<span class="ff3">、</span>短路电流法等<span class="ff4">,</span>虽然简单易行<span class="ff4">,</span>但往往无法在所有工作环境下实现最大功率点的精确追踪<span class="ff3">。</span>因此</div><div class="t m0 x1 h2 ya ff4 fs0 fc0 sc0 ls0 ws0">,<span class="ff2">需要更为先进的算法来优化<span class="_ _0"> </span><span class="ff1">MPPT<span class="ff3">。</span></span></span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>粒子群算法<span class="ff4">(<span class="ff1">PSO</span>)</span>在<span class="_ _0"> </span><span class="ff1">MPPT<span class="_ _1"> </span></span>中的应用</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">粒子群算法是一种基于群体智能的优化算法<span class="ff4">,</span>具有并行计算<span class="ff3">、</span>收敛速度快等优点<span class="ff3">。</span>在<span class="_ _0"> </span><span class="ff1">MPPT<span class="_ _1"> </span></span>中<span class="ff4">,<span class="ff1">PSO</span></span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">可以通过模拟粒子在搜索空间中的运动来寻找最优占空比<span class="ff3">。</span>首先<span class="ff4">,</span>通过<span class="_ _0"> </span><span class="ff1">PSO<span class="_ _1"> </span></span>算法的初始化<span class="ff4">,</span>生成一群</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">随机粒子并计算其适应度值<span class="ff3">。</span>然后<span class="ff4">,</span>通过粒子的速度和位置更新公式<span class="ff4">,</span>不断迭代寻找最优解<span class="ff3">。</span>当<span class="_ _0"> </span><span class="ff1">PSO</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">算法定位到最优占空比附近时<span class="ff4">,</span>可以启动下一阶段的优化过程<span class="ff3">。</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、<span class="ff1">PO<span class="_ _1"> </span></span></span>扰动与<span class="_ _0"> </span><span class="ff1">PSO<span class="_ _1"> </span></span>结合优化<span class="_ _0"> </span><span class="ff1">MPPT</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">当<span class="_ _0"> </span><span class="ff1">PSO<span class="_ _1"> </span></span>算法将粒子群集中到最优占空比附近时<span class="ff4">,</span>为了更精确地定位到最优占空比并实现快速稳定<span class="ff4">,</span>可</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">以引入<span class="_ _0"> </span><span class="ff1">PO<span class="_ _1"> </span></span>扰动<span class="ff3">。<span class="ff1">PO<span class="_ _1"> </span></span></span>扰动是一种局部搜索算法<span class="ff4">,</span>能够在<span class="_ _0"> </span><span class="ff1">PSO<span class="_ _1"> </span></span>的基础上进行微调<span class="ff4">,</span>以实现更精确的寻</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">优<span class="ff3">。</span>当粒子群集中到一定范围时<span class="ff4">,</span>启动<span class="_ _0"> </span><span class="ff1">PO<span class="_ _1"> </span></span>扰动进行局部搜索<span class="ff4">,</span>从而实现快速稳定地定位到最优占空</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">比<span class="ff3">。</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">五<span class="ff3">、</span>加入终止条件与重启功能</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">为了防止算法陷入局部最优解或过度迭代<span class="ff4">,</span>需要加入终止条件<span class="ff3">。</span>当算法达到预设的迭代次数<span class="ff3">、</span>适应度</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">值变化小于阈值等条件时<span class="ff4">,</span>算法将停止迭代并输出当前的最优解<span class="ff3">。</span>同时<span class="ff4">,</span>为了应对外部环境变化或系</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">统故障等情况<span class="ff4">,</span>需要加入重启功能<span class="ff3">。</span>当满足重启条件时<span class="ff4">,</span>如光照强度变化超过阈值<span class="ff3">、</span>系统长时间未进</div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">行<span class="_ _0"> </span><span class="ff1">MPPT<span class="_ _1"> </span></span>等<span class="ff4">,</span>算法将重新从初始状态开始进行寻优过程<span class="ff3">。</span></div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">六<span class="ff3">、</span>参考文献</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span>XXX. <span class="ff2">基于粒子群算法的<span class="_ _0"> </span></span>MPPT<span class="_ _1"> </span><span class="ff2">技术研究</span>[D]. <span class="ff2">某某大学</span>, 20XX.</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>

用户评论 (0)

发表评论

captcha

相关资源

永磁同步电机匝间短路故障的诊断与MATLAB仿真设计:基于Simulink仿真源文件的研究与实践,永磁同步电机匝间短路故障的MATLAB仿真系统设计与实现:详细说明文档及Simulink仿真源文件解析

永磁同步电机匝间短路故障的诊断与MATLAB仿真设计:基于Simulink仿真源文件的研究与实践,永磁同步电机匝间短路故障的MATLAB仿真系统设计与实现:详细说明文档及Simulink仿真源文件解析,永磁同步电机匝间短路故障MATLAB仿真设计说明文档和simulink仿真源文件,永磁同步电机; 匝间短路故障; MATLAB仿真设计; Simulink仿真源文件; 故障诊断,《MATLAB仿真研究:永磁同步电机匝间短路故障分析》

723.3KB10积分

基于PI控制策略的三相并联型有源电力滤波器APF仿真研究与id-iq谐波检测SVPWM调制方法优化,三相并联型有源电力滤波器APF仿真技术研究:基于PI控制的电压电流双环控制策略与id-iq谐波检测方

基于PI控制策略的三相并联型有源电力滤波器APF仿真研究与id-iq谐波检测SVPWM调制方法优化,三相并联型有源电力滤波器APF仿真技术研究:基于PI控制的电压电流双环控制策略与id-iq谐波检测方法及SVPWM调制技术的研究与应用,三相并联型有源电力滤波器APF仿真(电压外环电流内环均为PI控制),id-iq谐波检测方法,SVPWM调制方法。,三相并联型有源电力滤波器APF仿真; PI控制; id-iq谐波检测方法; SVPWM调制方法; 谐波滤除。,三相并联APF仿真:PI控制与id-iq谐波检测的SVPWM调制研究

589.64KB38积分

无人驾驶汽车:自动泊车路径规划与多项式规划垂直泊车技术解析,单步泊车系统详解,无人驾驶汽车的先进路径规划技术:垂直泊车多步算法优化及多项式路径规划的研究与应用 ,无人驾驶汽车自动泊车路径规划 多项式

无人驾驶汽车:自动泊车路径规划与多项式规划垂直泊车技术解析,单步泊车系统详解,无人驾驶汽车的先进路径规划技术:垂直泊车多步算法优化及多项式路径规划的研究与应用。,无人驾驶汽车自动泊车路径规划。多项式规划的垂直泊车,单步泊车,无人驾驶; 汽车; 自动泊车; 路径规划; 多项式规划; 垂直泊车; 单步泊车,多项式规划算法在无人驾驶汽车垂直泊车路径规划中的应用

183.11KB29积分

"Coomsol无损检测技术:钛合金材料中的傅立叶变换与B扫应用,固体力学与固体传热模块的耦合分析","Coomsol无损检测技术:钛合金材料中的傅立叶变换与B扫应用,结合固体力学与固体传热模块的耦合

"Coomsol无损检测技术:钛合金材料中的傅立叶变换与B扫应用,固体力学与固体传热模块的耦合分析","Coomsol无损检测技术:钛合金材料中的傅立叶变换与B扫应用,结合固体力学与固体传热模块的耦合分析",coomsol无损检测,钛合金傅立叶变和b扫使用的固体力学和固体传热模块耦合,coomsol无损检测; 钛合金; 傅立叶变换; b扫; 固体力学; 固体传热模块耦合,"Coomsol无损检测技术:钛合金的傅立叶变换与B扫耦合分析"

156.24KB46积分