ZIP多配送中心选址与车辆路径优化的集成策略:遗传算法在MDVRPTW中的应用及其Matlab代码解析,多配送中心选址与车辆路径优化问题的遗传算法研究:Matlab完整代码实现及数据可修改,多配送中心车辆路 3.28MB

zXxeNvuJ

资源文件列表:

多配送中心车辆路径优化 大约有14个文件
  1. 1.jpg 284.75KB
  2. 2.jpg 78.27KB
  3. 3.jpg 138.49KB
  4. 4.jpg 82.69KB
  5. 多配送中心车辆路径优.html 809KB
  6. 多配送中心车辆路径优化与选址问.txt 1.98KB
  7. 多配送中心车辆路径优化及其选址的问题探讨遗传算.html 809.44KB
  8. 多配送中心车辆路径优化及选址问.txt 2.38KB
  9. 多配送中心车辆路径优化及选址问题研究一引.html 809.12KB
  10. 多配送中心车辆路径优化多个配.html 807.57KB
  11. 文章标题多配送中心车辆路.html 808.12KB
  12. 文章标题多配送中心车辆路径优化及选.doc 2.24KB
  13. 文章标题多配送中心车辆路径优化及选址问题的遗传算.txt 1.81KB
  14. 文章标题多配送中心车辆路径优化问题.txt 1.95KB

资源介绍:

多配送中心选址与车辆路径优化的集成策略:遗传算法在MDVRPTW中的应用及其Matlab代码解析,多配送中心选址与车辆路径优化问题的遗传算法研究:Matlab完整代码实现及数据可修改,多配送中心车辆路径优化,多个配送中心 选址车辆路径优化lrp问题。 遗传算法多配送中心车辆路径优化,多配送中心车辆路径mdvrptw Matlab完整代码可直接修改数据 ,多配送中心; 车辆路径优化; 选址车辆路径优化; 遗传算法; 车辆路径mdvrptw; Matlab完整代码,多配送中心选址与车辆路径优化的遗传算法MATLAB完整代码
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90405529/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90405529/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">文章标题<span class="ff2">:</span>多配送中心车辆路径优化及选址问题的遗传算法研究</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">在物流配送领域<span class="ff2">,</span>多配送中心车辆路径优化和选址问题一直备受关注<span class="ff3">。</span>本文将重点讨论如何运用遗传</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">算法解决多配送中心车辆路径优化问题以及多配送中心选址车辆路径优化问题<span class="ff2">(<span class="ff4">LRP<span class="_ _0"> </span></span></span>问题<span class="ff2">),</span>并附上</div><div class="t m0 x1 h2 y4 ff4 fs0 fc0 sc0 ls0 ws0">Matlab<span class="_ _0"> </span><span class="ff1">完整代码<span class="ff2">,</span>以便读者直接修改数据进行研究<span class="ff3">。</span></span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>多配送中心车辆路径优化问题</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">多配送中心车辆路径优化问题<span class="ff2">(<span class="ff4">MDVRPTW</span>)</span>是一个复杂的优化问题<span class="ff2">,</span>涉及到多个配送中心<span class="ff3">、</span>多个配送</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">点以及车辆的路径规划<span class="ff3">。</span>该问题的目标是寻找最优的车辆路径<span class="ff2">,</span>以最小化总运输成本和时间<span class="ff3">。</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">针对该问题<span class="ff2">,</span>我们可以采用遗传算法进行求解<span class="ff3">。</span>遗传算法是一种模拟自然进化过程的优化算法<span class="ff2">,</span>能够</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">通过模拟生物进化过程中的选择<span class="ff3">、</span>交叉<span class="ff3">、</span>变异等操作<span class="ff2">,</span>寻找问题的最优解<span class="ff3">。</span>在多配送中心车辆路径优</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">化问题中<span class="ff2">,</span>遗传算法可以通过编码车辆路径作为个体<span class="ff2">,</span>以运输成本和时间作为适应度函数<span class="ff2">,</span>进行迭代</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">优化<span class="ff3">。</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>多配送中心选址车辆路径优化问题<span class="ff2">(<span class="ff4">LRP<span class="_ _0"> </span></span></span>问题<span class="ff2">)</span></div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">多配送中心选址车辆路径优化问题<span class="ff2">(<span class="ff4">LRP<span class="_ _0"> </span></span></span>问题<span class="ff2">)</span>不仅涉及到车辆路径的优化<span class="ff2">,</span>还要考虑配送中心的选</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">址<span class="ff3">。</span>该问题的目标是寻找最优的配送中心位置和车辆路径<span class="ff2">,</span>以最小化总成本和满足客户需求<span class="ff3">。</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">同样<span class="ff2">,</span>我们可以采用遗传算法来解决该问题<span class="ff3">。</span>在遗传算法中<span class="ff2">,</span>我们可以将配送中心选址和车辆路径作</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">为一体进行编码<span class="ff2">,</span>以总成本和客户满意度作为适应度函数<span class="ff2">,</span>进行迭代优化<span class="ff3">。</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、<span class="ff4">Matlab<span class="_ _0"> </span></span></span>完整代码示例</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">下面是一个简单的<span class="_ _1"> </span><span class="ff4">Matlab<span class="_ _0"> </span></span>代码示例<span class="ff2">,</span>用于解决多配送中心车辆路径优化问题<span class="ff3">。</span>该代码采用遗传算法</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">进行求解<span class="ff2">,</span>读者可以根据实际需求修改数据和参数<span class="ff3">。</span></div><div class="t m0 x1 h3 y14 ff4 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y15 ff4 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">初始化参数</span></div><div class="t m0 x1 h2 y16 ff4 fs0 fc0 sc0 ls0 ws0">num_centers = 3; % <span class="ff1">配送中心数量</span></div><div class="t m0 x1 h2 y17 ff4 fs0 fc0 sc0 ls0 ws0">num_vehicles = 5; % <span class="ff1">车辆数量</span></div><div class="t m0 x1 h2 y18 ff4 fs0 fc0 sc0 ls0 ws0">pop_size = 100; % <span class="ff1">种群大小</span></div><div class="t m0 x1 h2 y19 ff4 fs0 fc0 sc0 ls0 ws0">generations = 500; % <span class="ff1">迭代次数</span></div><div class="t m0 x1 h2 y1a ff4 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">其他参数</span>...</div><div class="t m0 x1 h2 y1b ff4 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">初始化种群</span></div><div class="t m0 x1 h3 y1c ff4 fs0 fc0 sc0 ls0 ws0">population = initialize_population(pop_size, num_centers, num_vehicles);</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIP两级式单相光伏并网仿真研究:MATLAB 2021a版本下的DC-DC变换与桥式逆变技术实现功率跟踪与并网效果优化,基于Matlab 2021a的两级式单相光伏并网仿真研究:实现最大功率跟踪与稳定的直575.85KB2月前
    ZIPjavaWeb楠小弟自助图书系统项目,使用注解方式配合原生js、axios方式完成整个项目的开发,系统只适合在javaWeb阶段19.84MB2月前
    ZIP完美移植android4.0中的spinner(修改版)1.02MB2月前
    ZIPwindows arduino 1.8.19 111.58MB2月前
    ZIP西门子S7-200 PLC在电气装配生产线控制系统中的应用与组态王组态设计及PLC程序设计研究,西门子S7-200 PLC在电气装配生产线控制系统中的应用与组态王组态设计及PLC程序设计,55#西门子2.95MB2月前
    ZIP深度学习神经网络RNN、LSTM与GRU在锂离子电池SOH预测中的应用-基于NASA数据集的Python代码实现策略,深度学习在锂离子电池SOH预测中的应用:基于RNN、LSTM和GRU神经网络的N1.03MB2月前
    ZIP西门子S7-200 PLC在加热炉温度控制与电气设计中的应用研究:基于MCGS组态的控制系统设计,基于西门子S7-200 PLC的加热炉温度控制与电气设计:使用MCGS组态的实践应用,44#西门子S72.78MB2月前
    ZIP扫地机器人路径规划与AGV全覆盖移动避障算法研究:深度优先搜索与随机碰撞策略比较,扫地机器人路径规划与AGV全覆盖移动避障算法研究:深度优先搜索与随机碰撞策略比较,AGV全覆盖移动避障路径规划扫地机3.96MB2月前