基于深度学习神经网络的锂离子电池预
大小:1.03MB
价格:45积分
下载量:0
评分:
5.0
上传者:mDJzZbgVFea
更新日期:2025-09-22

深度学习神经网络RNN、LSTM与GRU在锂离子电池SOH预测中的应用-基于NASA数据集的Python代码实现策略,深度学习在锂离子电池SOH预测中的应用:基于RNN、LSTM和GRU神经网络的N

资源文件列表(大概)

文件名
大小
1.jpg
42.36KB
2.jpg
62.47KB
3.jpg
71.08KB
4.jpg
34.91KB
基于深度学习神经网络的锂离子.html
309.57KB
基于深度学习神经网络的锂离子电池.txt
1.93KB
基于深度学习神经网络的锂离子电池健康状态.txt
1.98KB
基于深度学习神经网络的锂离子电池预.html
309.11KB
基于深度学习神经网络的锂离子电池预.txt
1.75KB
基于深度学习神经网络的锂离子电池预测一引.html
310.6KB
基于深度学习神经网络的锂离子电池预测一引言随着电.doc
1.96KB
基于深度学习神经网络的锂离子电池预测数据集.html
311.34KB
基于深度学习神经网络的锂离子电池预测研.txt
1.89KB

资源内容介绍

深度学习神经网络RNN、LSTM与GRU在锂离子电池SOH预测中的应用——基于NASA数据集的Python代码实现策略,深度学习在锂离子电池SOH预测中的应用:基于RNN、LSTM和GRU神经网络的NASA数据集Python代码实现研究,基于深度学习神经网络RNN、LSTM、GRU的锂离子电池SOH预测,NASA数据集,Python代码实现。,RNN; LSTM; GRU; 锂离子电池SOH预测; NASA数据集; Python代码实现。,深度学习预测锂离子电池SOH:RNN、LSTM、GRU模型NASA数据集Python实现
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90405505/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90405505/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">基于深度学习神经网络<span class="_ _0"> </span></span>RNN<span class="ff3">、</span>LSTM<span class="ff3">、</span>GRU<span class="_ _1"> </span><span class="ff2">的锂离子电池<span class="_ _0"> </span></span>SOH<span class="_ _1"> </span><span class="ff2">预测</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">随着电动汽车和智能电网的快速发展<span class="ff4">,</span>锂离子电池<span class="ff4">(<span class="ff1">LIB</span>)</span>的健広状态<span class="ff4">(<span class="ff1">State of Health</span>,<span class="ff1">SOH</span></span></div><div class="t m0 x1 h2 y4 ff4 fs0 fc0 sc0 ls0 ws0">)<span class="ff2">预测变得尤为重要<span class="ff3">。<span class="ff1">SOH<span class="_ _1"> </span></span></span>是衡量电池性能的重要指标</span>,<span class="ff2">准确预测<span class="_ _0"> </span><span class="ff1">SOH<span class="_ _1"> </span></span>可以延长电池寿命</span>,<span class="ff2">提高使用</span></div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">效率<span class="ff3">。</span>本文将探讨如何利用深度学习中的循环神经网络<span class="ff4">(<span class="ff1">RNN</span>)<span class="ff3">、</span></span>长短期记忆网络<span class="ff4">(<span class="ff1">LSTM</span>)</span>和门控循</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">环单元<span class="ff4">(<span class="ff1">GRU</span>)</span>对锂离子电池的<span class="_ _0"> </span><span class="ff1">SOH<span class="_ _1"> </span></span>进行预测<span class="ff4">,</span>并采用<span class="_ _0"> </span><span class="ff1">NASA<span class="_ _1"> </span></span>提供的数据集和<span class="_ _0"> </span><span class="ff1">Python<span class="_ _1"> </span></span>代码实现<span class="ff3">。</span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>相关技术概述</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">锂离子电池<span class="_ _0"> </span></span>SOH<span class="_ _1"> </span><span class="ff2">预测的重要性<span class="ff4">:</span>锂离子电池的<span class="_ _0"> </span></span>SOH<span class="_ _1"> </span><span class="ff2">反映了其随着使用时间的推移性能退化的程</span></div><div class="t m0 x2 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">度<span class="ff3">。</span>准确预测<span class="_ _0"> </span><span class="ff1">SOH<span class="_ _1"> </span></span>对于电池管理系统<span class="ff4">(<span class="ff1">BMS</span>)</span>至关重要<span class="ff4">,</span>有助于避免电池过充<span class="ff3">、</span>过放等潜在风险</div><div class="t m0 x2 h3 ya ff3 fs0 fc0 sc0 ls0 ws0">。</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff2">深度学习神经网络<span class="ff4">:</span></span></div><div class="t m0 x3 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">-<span class="_ _2"> </span>RNN<span class="ff4">:<span class="ff2">适合处理序列数据</span>,<span class="ff2">能够捕捉时间序列数据中的依赖关系<span class="ff3">。</span></span></span></div><div class="t m0 x3 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">-<span class="_ _2"> </span>LSTM<span class="ff4">:<span class="ff2">在<span class="_ _0"> </span></span></span>RNN<span class="_ _1"> </span><span class="ff2">的基础上增加了门控机制<span class="ff4">,</span>可以更好地捕捉序列中的长期依赖关系<span class="ff3">。</span></span></div><div class="t m0 x3 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">-<span class="_ _2"> </span>GRU<span class="ff4">:<span class="ff2">与<span class="_ _0"> </span></span></span>LSTM<span class="_ _1"> </span><span class="ff2">类似<span class="ff4">,</span>但结构更简单<span class="ff4">,</span>参数更少<span class="ff3">。</span></span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">3. NASA<span class="_ _1"> </span><span class="ff2">数据集<span class="ff4">:</span></span>NASA<span class="_ _1"> </span><span class="ff2">提供了大量关于锂离子电池性能的数据<span class="ff4">,</span>包括电压<span class="ff3">、</span>电流<span class="ff3">、</span>温度等参数<span class="ff4">,</span>为</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">我们的研究提供了丰富的资源<span class="ff3">。</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>模型构建与实现</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">数据预处理<span class="ff4">:</span>首先<span class="ff4">,</span>我们需要对<span class="_ _0"> </span></span>NASA<span class="_ _1"> </span><span class="ff2">提供的数据集进行预处理<span class="ff4">,</span>包括数据清洗<span class="ff3">、</span>标准化和划分</span></div><div class="t m0 x2 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">训练集与测试集等步骤<span class="ff3">。</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff2">构建模型<span class="ff4">:</span>根据锂离子电池的特性<span class="ff4">,</span>我们选择使用<span class="_ _0"> </span></span>RNN<span class="ff3">、</span>LSTM<span class="_ _1"> </span><span class="ff2">或<span class="_ _0"> </span></span>GRU<span class="_ _1"> </span><span class="ff2">构建模型<span class="ff3">。</span>这些模型能够</span></div><div class="t m0 x2 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">捕捉电池性能随时间变化的特征<span class="ff4">,</span>从而预测<span class="_ _0"> </span><span class="ff1">SOH<span class="ff3">。</span></span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span>Python<span class="_ _1"> </span><span class="ff2">代码实现<span class="ff4">:</span>我们使用<span class="_ _0"> </span></span>Python<span class="_ _1"> </span><span class="ff2">语言和深度学习框架<span class="ff4">(</span>如<span class="_ _0"> </span></span>TensorFlow<span class="_ _1"> </span><span class="ff2">或<span class="_ _0"> </span></span>PyTorch<span class="ff4">)<span class="ff2">实</span></span></div><div class="t m0 x2 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">现模型<span class="ff3">。</span>具体代码包括定义模型结构<span class="ff3">、</span>编译模型<span class="ff3">、</span>训练模型和评估模型等步骤<span class="ff3">。</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、</span>实验与结果分析</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff2">实验设置<span class="ff4">:</span>我们使用<span class="_ _0"> </span></span>NASA<span class="_ _1"> </span><span class="ff2">数据集中的一部分数据作为训练集<span class="ff4">,</span>另一部分作为测试集<span class="ff3">。</span>在实验中</span></div><div class="t m0 x2 h2 y1a ff4 fs0 fc0 sc0 ls0 ws0">,<span class="ff2">我们分别使用<span class="_ _0"> </span><span class="ff1">RNN<span class="ff3">、</span>LSTM<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff1">GRU<span class="_ _1"> </span></span>构建模型</span>,<span class="ff2">并对比它们的性能<span class="ff3">。</span></span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>

用户评论 (0)

发表评论

captcha

相关资源

西门子S7-200 PLC在电气装配生产线控制系统中的应用与组态王组态设计及PLC程序设计研究,西门子S7-200 PLC在电气装配生产线控制系统中的应用与组态王组态设计及PLC程序设计,55#西门子

西门子S7-200 PLC在电气装配生产线控制系统中的应用与组态王组态设计及PLC程序设计研究,西门子S7-200 PLC在电气装配生产线控制系统中的应用与组态王组态设计及PLC程序设计,55#西门子S7-200PLC和组态王电气装配生产线控制系统组态设计plc程序设计,55#; 西门子S7-200PLC; 组态王电气装配; 生产线控制系统; 组态设计; PLC程序设计;,西门子S7-200PLC与组态王电气装配线控制系统组态设计及PLC编程

2.95MB10积分

多配送中心选址与车辆路径优化的集成策略:遗传算法在MDVRPTW中的应用及其Matlab代码解析,多配送中心选址与车辆路径优化问题的遗传算法研究:Matlab完整代码实现及数据可修改,多配送中心车辆路

多配送中心选址与车辆路径优化的集成策略:遗传算法在MDVRPTW中的应用及其Matlab代码解析,多配送中心选址与车辆路径优化问题的遗传算法研究:Matlab完整代码实现及数据可修改,多配送中心车辆路径优化,多个配送中心选址车辆路径优化lrp问题。遗传算法多配送中心车辆路径优化,多配送中心车辆路径mdvrptwMatlab完整代码可直接修改数据,多配送中心; 车辆路径优化; 选址车辆路径优化; 遗传算法; 车辆路径mdvrptw; Matlab完整代码,多配送中心选址与车辆路径优化的遗传算法MATLAB完整代码

3.28MB40积分

两级式单相光伏并网仿真研究:MATLAB 2021a版本下的DC-DC变换与桥式逆变技术实现功率跟踪与并网效果优化,基于Matlab 2021a的两级式单相光伏并网仿真研究:实现最大功率跟踪与稳定的直

两级式单相光伏并网仿真研究:MATLAB 2021a版本下的DC-DC变换与桥式逆变技术实现功率跟踪与并网效果优化,基于Matlab 2021a的两级式单相光伏并网仿真研究:实现最大功率跟踪与稳定的直流母线电压,两级式单相光伏并网仿真(注意版本matlab 2021a)前级采用DC-DC变电路,通过MPPT控制DC-DC电路的pwm波来实现最大功率跟踪,mppt采用扰动观察法,后级采用桥式逆变,用spwm波调制。采用双闭环控制,实现直流母线电压的稳定和单位功率因数。并网效果良好,thd满足并网要求,附带仿真说明文件,两级式单相光伏并网仿真; MATLAB 2021a; DC-DC变换电路; MPPT控制; 扰动观察法; 桥式逆变; SPWM波调制; 双闭环控制; 直流母线电压稳定; 单位功率因数; 并网效果; THD。,MATLAB 2021a双闭环控制两级式单相光伏并网仿真研究

575.85KB46积分

javaWeb楠小弟自助图书系统项目,使用注解方式配合原生js、axios方式完成整个项目的开发,系统只适合在javaWeb阶段

,使用注解方式配合原生js、axios方式完成整个项目的开发,系统只适合在javaWeb阶段,

19.84MB20积分