混合四策略改进SSA优化算法:MISSA的实证研究与应用展望经过融合spm映射、自适应-正余弦算法、levy机制、步长因子动态调整四种策略的改进,MISSA算法测试结果惊艳,麻雀飞天变凤凰 目前相
资源内容介绍
混合四策略改进SSA优化算法:MISSA的实证研究与应用展望经过融合spm映射、自适应-正余弦算法、levy机制、步长因子动态调整四种策略的改进,MISSA算法测试结果惊艳,麻雀飞天变凤凰。目前相关文献较少,但对比SSA、CSSA、TSSA等算法,其收敛速度和精度均有显著提升。在23个测试函数上的对比效果显著,且附有详细说明文档。最大迭代次数可调为500,独立运行次数为30次,初始种群数量为30。期待更多学者关注和探讨MISSA算法的应用与拓展。,混合四重策略的SSA优化算法(MISSA):从麻雀到凤凰的飞跃式改进,混合4策略改进SSA优化算法(MISSA)。测试出来真的是麻雀飞天变凤凰目前相关文献还比较少。抓紧发。融合spm映射、自适应-正余弦算法、levy机制、步长因子动态调整4种策略改进收敛速度和收敛精度一针见血,看图就知道改进变化多大,有对比算法,对比鲜明最大迭代次数:500(可调)独立运行次数:30初始种群数量:30对比算法:SSA,CSSA,TSSA 对比效果和测试函数(一共23个函数)形状均给出,有需要,有详细说明文档,,核心关键词:1. 混合 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90404998/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90404998/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**MISSA<span class="_ _0"> </span><span class="ff2">算法<span class="ff3">:</span>融合多策略改进<span class="_ _1"> </span></span>SSA<span class="_ _0"> </span><span class="ff2">优化算法的深度探索</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">随着现代科学技术的快速发展<span class="ff3">,</span>优化算法在众多领域的应用日益广泛<span class="ff4">。</span>其中<span class="ff3">,<span class="ff1">SSA</span>(</span>某种特定的优化</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">算法<span class="ff3">)</span>以其独特的寻优能力<span class="ff3">,</span>在众多挑战性优化问题中发挥着重要作用<span class="ff4">。</span>然而<span class="ff3">,</span>任何算法都存在进一</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">步优化的空间<span class="ff4">。</span>本文将介绍一种融合了混合<span class="_ _1"> </span><span class="ff1">4<span class="_ _0"> </span></span>策略的改进<span class="_ _1"> </span><span class="ff1">SSA<span class="_ _0"> </span></span>优化算法<span class="ff1">——MISSA<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>混合策略的引入</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">MISSA<span class="_ _0"> </span><span class="ff2">算法融合了<span class="_ _1"> </span></span>spm<span class="_ _0"> </span><span class="ff2">映射<span class="ff4">、</span>自适应</span>-<span class="ff2">正余弦算法<span class="ff4">、</span></span>Levy<span class="_ _0"> </span><span class="ff2">机制以及步长因子动态调整四种策略<span class="ff3">,</span>旨</span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">在改进<span class="_ _1"> </span><span class="ff1">SSA<span class="_ _0"> </span></span>算法的收敛速度和收敛精度<span class="ff4">。</span>这些策略的引入<span class="ff3">,</span>使得<span class="_ _1"> </span><span class="ff1">MISSA<span class="_ _0"> </span></span>算法在处理复杂问题时能够</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">展现出更强的寻优能力<span class="ff4">。</span></div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>具体改进策略</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span>SPM<span class="_ _0"> </span><span class="ff2">映射<span class="ff3">:</span>通过引入<span class="_ _1"> </span></span>spm<span class="_ _0"> </span><span class="ff2">映射<span class="ff3">,</span></span>MISSA<span class="_ _0"> </span><span class="ff2">算法能够在搜索空间中更准确地定位寻优方向<span class="ff3">,</span>减少无</span></div><div class="t m0 x2 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">效搜索<span class="ff3">,</span>提高收敛速度<span class="ff4">。</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff2">自适应</span>-<span class="ff2">正余弦算法<span class="ff3">:</span>该策略使得<span class="_ _1"> </span></span>MISSA<span class="_ _0"> </span><span class="ff2">算法在迭代过程中能够根据当前状态自适应地调整正余</span></div><div class="t m0 x2 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">弦搜索策略<span class="ff3">,</span>从而在保持寻优精度的同时提高算法的鲁棒性<span class="ff4">。</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span>Levy<span class="_ _0"> </span><span class="ff2">机制<span class="ff3">:</span></span>Levy<span class="_ _0"> </span><span class="ff2">飞行作为一种随机游走策略<span class="ff3">,</span>被引入到<span class="_ _1"> </span></span>MISSA<span class="_ _0"> </span><span class="ff2">算法中<span class="ff3">,</span>以增强算法的全局搜</span></div><div class="t m0 x2 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">索能力<span class="ff3">,</span>提高找到最优解的概率<span class="ff4">。</span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _2"> </span><span class="ff2">步长因子动态调整<span class="ff3">:</span>通过动态调整步长因子<span class="ff3">,</span></span>MISSA<span class="_ _0"> </span><span class="ff2">算法能够在迭代过程中根据当前状态自适</span></div><div class="t m0 x2 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">应地调整步长<span class="ff3">,</span>从而在保持寻优精度的同时提高收敛速度<span class="ff4">。</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、</span>对比实验与结果分析</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">为了验证<span class="_ _1"> </span><span class="ff1">MISSA<span class="_ _0"> </span></span>算法的优越性<span class="ff3">,</span>我们进行了大量的对比实验<span class="ff4">。</span>实验中<span class="ff3">,</span>我们选择了<span class="_ _1"> </span><span class="ff1">23<span class="_ _0"> </span></span>个测试函数<span class="ff3">,</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">并设定最大迭代次数为<span class="_ _1"> </span><span class="ff1">500<span class="ff3">(</span></span>可调<span class="ff3">),</span>独立运行次数为<span class="_ _1"> </span><span class="ff1">30<span class="ff3">,</span></span>初始种群数量为<span class="_ _1"> </span><span class="ff1">30<span class="ff4">。</span></span>对比算法包括<span class="_ _1"> </span><span class="ff1">SSA</span></div><div class="t m0 x1 h2 y15 ff4 fs0 fc0 sc0 ls0 ws0">、<span class="ff1">CSSA<span class="_ _0"> </span><span class="ff2">和<span class="_ _1"> </span></span>TSSA</span>。</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">实验结果显示<span class="ff3">,<span class="ff1">MISSA<span class="_ _0"> </span></span></span>算法在收敛速度和收敛精度方面均表现出明显优势<span class="ff4">。</span>通过图示对比<span class="ff3">,</span>我们可以</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">清晰地看到<span class="_ _1"> </span><span class="ff1">MISSA<span class="_ _0"> </span></span>算法在迭代过程中的改进变化<span class="ff4">。</span>在最大迭代次数内<span class="ff3">,<span class="ff1">MISSA<span class="_ _0"> </span></span></span>算法能够更快地找到</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">更优解<span class="ff3">,</span>且解的稳定性更高<span class="ff4">。</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">四<span class="ff4">、</span>详细说明文档</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">关于<span class="_ _1"> </span><span class="ff1">MISSA<span class="_ _0"> </span></span>算法的详细说明文档<span class="ff3">,</span>我们提供了完整的算法流程<span class="ff4">、</span>参数设置<span class="ff4">、</span>实验结果分析等内容<span class="ff4">。</span>文</div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">档中详细阐述了每种策略的原理和作用<span class="ff3">,</span>以及如何在<span class="_ _1"> </span><span class="ff1">MISSA<span class="_ _0"> </span></span>算法中实现这些策略<span class="ff4">。</span>此外<span class="ff3">,</span>我们还提供</div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">了测试函数的详细信息<span class="ff3">,</span>包括函数形状<span class="ff4">、</span>特点等<span class="ff3">,</span>以便读者更好地理解实验结果<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>