基于MATLAB的声音信号识别技术:时频特征提取与机器学习有监督训练测试及混淆矩阵分析,基于MATLAB的声音信号识别技术:时频特征提取与机器学习有监督训练测试及混淆矩阵分析,基于MATLAB的声音信
资源内容介绍
基于MATLAB的声音信号识别技术:时频特征提取与机器学习有监督训练测试及混淆矩阵分析,基于MATLAB的声音信号识别技术:时频特征提取与机器学习有监督训练测试及混淆矩阵分析,基于MATLAB的声音信号识别首先是提取各种时频特征,然后利用机器学习等方法进行有监督学习,训练,测试,混淆矩阵。,MATLAB; 声音信号识别; 时频特征提取; 有监督学习; 训练测试; 混淆矩阵。,基于MATLAB的声音信号识别与有监督学习训练测试 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90403816/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90403816/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">MATLAB<span class="_ _1"> </span></span>的声音信号识别技术及其实现</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">声音信号识别在多个领域都有广泛应用<span class="ff4">,</span>例如语音识别<span class="ff3">、</span>环境监测<span class="ff3">、</span>智能驾驶等<span class="ff3">。</span>基于<span class="_ _0"> </span><span class="ff2">MATLAB<span class="_ _1"> </span></span>的声</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">音信号识别技术是当前研究和应用的一个热点<span class="ff3">。</span>本文将主要探讨如何利用<span class="_ _0"> </span><span class="ff2">MATLAB<span class="_ _1"> </span></span>进行声音信号的识</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">别<span class="ff4">,</span>从特征提取到机器学习算法的利用进行有监督学习<span class="ff4">,</span>以及最后的训练和测试流程和结果展示<span class="ff3">。</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>特征提取</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">首先<span class="ff4">,</span>在处理声音信号时<span class="ff4">,</span>我们主要关注的特征有短时能量<span class="ff3">、</span>短时过零率<span class="ff3">、</span>频谱特征等<span class="ff3">。</span>这些特征能</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">够有效地描述声音信号的时频特性<span class="ff3">。</span></div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">短时能量和短时过零率<span class="ff4">:</span>这两种特征可以在信号处理的前端阶段获取<span class="ff3">。</span>通过在时域上分析信号<span class="ff4">,</span></span></div><div class="t m0 x2 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">计算滑动窗口内的信号能量的累加和和过零次数<span class="ff4">,</span>我们能够有效地描述信号的活跃度和变化情况</div><div class="t m0 x2 h3 yb ff3 fs0 fc0 sc0 ls0 ws0">。</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">频谱特征<span class="ff4">:</span>频谱特征主要描述了声音信号在频域上的分布情况<span class="ff3">。</span>通过<span class="_ _0"> </span></span>MATLAB<span class="_ _1"> </span><span class="ff1">的<span class="_ _0"> </span></span>FFT<span class="ff4">(<span class="ff1">快速傅</span></span></div><div class="t m0 x2 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">里叶变换<span class="ff4">)</span>等工具<span class="ff4">,</span>我们可以获取声音信号的频谱特征<span class="ff3">。</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>机器学习及有监督学习</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">提取了时频特征后<span class="ff4">,</span>我们接下来将使用机器学习方法进行有监督学习<span class="ff3">。</span>这里我们主要用到的是分类算</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">法<span class="ff4">,</span>例如支持向量机<span class="ff4">(<span class="ff2">SVM</span>)<span class="ff3">、</span></span>随机森林<span class="ff4">(<span class="ff2">Random Forest</span>)</span>等<span class="ff3">。</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">有监督学习主要包括训练和测试两个阶段<span class="ff3">。</span>在训练阶段<span class="ff4">,</span>我们使用已知标签的数据集进行模型训练<span class="ff4">,</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">通过计算损失函数并使用优化算法来更新模型的参数<span class="ff3">。</span>在测试阶段<span class="ff4">,</span>我们使用测试集来评估模型的性</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">能<span class="ff4">,</span>包括准确率<span class="ff3">、</span>召回率等指标<span class="ff3">。</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、</span>训练与测试</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">在<span class="_ _0"> </span><span class="ff2">MATLAB<span class="_ _1"> </span></span>中<span class="ff4">,</span>我们可以使用内置的机器学习工具箱进行模型的训练和测试<span class="ff3">。</span>首先<span class="ff4">,</span>我们需要将数据</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">集分为训练集和测试集<span class="ff3">。</span>然后<span class="ff4">,</span>我们可以选择合适的模型进行训练<span class="ff3">。</span>在训练过程中<span class="ff4">,</span>我们可以使用交</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">叉验证等方法来防止过拟合<span class="ff4">,</span>并调整模型的参数以获得最佳性能<span class="ff3">。</span>最后<span class="ff4">,</span>我们使用测试集来评估模型</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">的性能<span class="ff4">,</span>并生成混淆矩阵以直观地展示模型的分类效果<span class="ff3">。</span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">五<span class="ff3">、</span>混淆矩阵</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">混淆矩阵是一种常用的评估分类模型性能的工具<span class="ff3">。</span>它展示了模型在不同类别上的真正例<span class="ff4">(<span class="ff2">TP</span>)<span class="ff3">、</span></span>假正</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">例<span class="ff4">(<span class="ff2">FP</span>)<span class="ff3">、</span></span>真反例<span class="ff4">(<span class="ff2">TN</span>)</span>和假反例<span class="ff4">(<span class="ff2">FN</span>)</span>的数量<span class="ff3">。</span>通过混淆矩阵<span class="ff4">,</span>我们可以清楚地看到模型在各个</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">类别上的分类效果<span class="ff4">,</span>从而更好地理解模型的性能<span class="ff3">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>