基于LLE方程的微环谐振腔光学频率梳仿真研究:考虑色散、克尔非线性及外部泵浦因素的可延展性分析,基于Matlab仿真的微环谐振腔光学频率梳及其LLE方程求解研究,考虑色散、克尔非线性和外部泵浦因素的动
资源内容介绍
基于LLE方程的微环谐振腔光学频率梳仿真研究:考虑色散、克尔非线性及外部泵浦因素的可延展性分析,基于Matlab仿真的微环谐振腔光学频率梳及其LLE方程求解研究,考虑色散、克尔非线性和外部泵浦因素的动态可延展性分析,微环谐振腔的光学频率梳matlab仿真微腔光频梳仿真包括求解LLE方程(Lugiato-Lefever equation)实现微环中的光频梳,同时考虑了色散,克尔非线性,外部泵浦等因素,具有可延展性。,光学频率梳; matlab仿真; 微环谐振腔; LLE方程; 物理模拟; 色散; 克尔非线性; 外部泵浦。,微环谐振腔LLE方程光频梳仿真 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90402008/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90402008/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">文章标题<span class="ff2">:</span>微环谐振腔光学频率梳的<span class="_ _0"> </span><span class="ff3">Matlab<span class="_ _1"> </span></span>仿真研究</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着光学通信和光子学技术的不断发展<span class="ff2">,</span>微环谐振腔的光学频率梳技术已成为研究热点<span class="ff4">。</span>微环谐振腔</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">的光学频率梳具有高精度<span class="ff4">、</span>高稳定性及可扩展性等优点<span class="ff2">,</span>在光通信<span class="ff4">、</span>微波光子学<span class="ff4">、</span>光谱学等领域有着</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">广泛的应用前景<span class="ff4">。</span>本文将通过<span class="_ _0"> </span><span class="ff3">Matlab<span class="_ _1"> </span></span>仿真<span class="ff2">,</span>研究微环谐振腔中光学频率梳的生成<span class="ff2">,</span>并考虑色散<span class="ff4">、</span>克</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">尔非线性<span class="ff4">、</span>外部泵浦等因素的影响<span class="ff4">。</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>微环谐振腔的基本原理</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">微环谐振腔是一种基于光学谐振原理的微型器件<span class="ff2">,</span>其工作原理是通过光波在微环中传播并发生干涉<span class="ff2">,</span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">形成特定的模式<span class="ff4">。</span>当光波在微环中传播时<span class="ff2">,</span>会受到色散<span class="ff4">、</span>克尔非线性等效应的影响<span class="ff2">,</span>从而产生光学频</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">率梳<span class="ff4">。</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、<span class="ff3">Lugiato-Lefever<span class="_ _1"> </span></span></span>方程<span class="ff2">(<span class="ff3">LLE<span class="_ _1"> </span></span></span>方程<span class="ff2">)</span>的求解</div><div class="t m0 x1 h2 yc ff3 fs0 fc0 sc0 ls0 ws0">LLE<span class="_ _1"> </span><span class="ff1">方程是描述微环谐振腔中光场演化的一种重要方法<span class="ff4">。</span>在仿真过程中<span class="ff2">,</span>我们需要通过求解<span class="_ _0"> </span></span>LLE<span class="_ _1"> </span><span class="ff1">方程</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">实现微环中的光频梳的生成<span class="ff4">。</span>在考虑色散<span class="ff4">、</span>克尔非线性<span class="ff4">、</span>外部泵浦等因素的影响下</span>,<span class="ff3">LLE<span class="_ _1"> </span><span class="ff1">方程可以</span></span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">表示为<span class="ff2">:</span></div><div class="t m0 x1 h3 yf ff3 fs0 fc0 sc0 ls0 ws0">U_t = -D|U|^2*U + i*K*|U|^2*U + F(t) + D_group*U_xx</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">其中<span class="ff2">,<span class="ff3">U<span class="_ _1"> </span></span></span>表示光场强度<span class="ff2">,<span class="ff3">D<span class="_ _1"> </span></span></span>和<span class="_ _0"> </span><span class="ff3">K<span class="_ _1"> </span></span>分别表示色散和克尔非线性系数<span class="ff2">,<span class="ff3">F(t)</span></span>表示外部泵浦源<span class="ff2">,<span class="ff3">D_group</span></span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">表示群速度色散系数<span class="ff2">,<span class="ff3">U_xx<span class="_ _1"> </span></span></span>表示对<span class="_ _0"> </span><span class="ff3">U<span class="_ _1"> </span></span>的空间二阶导数<span class="ff4">。</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">在<span class="_ _0"> </span><span class="ff3">Matlab<span class="_ _1"> </span></span>中<span class="ff2">,</span>我们可以使用数值方法<span class="ff2">(</span>如四阶龙格<span class="ff3">-</span>库塔法<span class="ff2">)</span>来求解<span class="_ _0"> </span><span class="ff3">LLE<span class="_ _1"> </span></span>方程<span class="ff4">。</span>通过不断迭代求解</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">可以得到微环中光场的演化情况</span>,<span class="ff1">从而得到光学频率梳的生成过程<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff4">、</span>仿真结果与分析</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">通过<span class="_ _0"> </span><span class="ff3">Matlab<span class="_ _1"> </span></span>仿真<span class="ff2">,</span>我们可以得到微环谐振腔中光学频率梳的生成情况<span class="ff4">。</span>在考虑色散<span class="ff4">、</span>克尔非线性<span class="ff4">、</span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">外部泵浦等因素的影响下<span class="ff2">,</span>我们可以观察到光学频率梳的生成过程和特性<span class="ff4">。</span>通过调整参数<span class="ff2">,</span>我们可以</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">得到不同模式的光学频率梳<span class="ff2">,</span>并分析其稳定性和可扩展性<span class="ff4">。</span></div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">五<span class="ff4">、</span>结论</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">本文通过<span class="_ _0"> </span><span class="ff3">Matlab<span class="_ _1"> </span></span>仿真<span class="ff2">,</span>研究了微环谐振腔中光学频率梳的生成过程<span class="ff4">。</span>通过求解<span class="_ _0"> </span><span class="ff3">LLE<span class="_ _1"> </span></span>方程<span class="ff2">,</span>我们得到</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">了微环中光场的演化情况<span class="ff2">,</span>并考虑了色散<span class="ff4">、</span>克尔非线性<span class="ff4">、</span>外部泵浦等因素的影响<span class="ff4">。</span>仿真结果表明<span class="ff2">,</span>微</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>