基于领航跟随法与人工势场法的多机器人编队避障方法研究-MATLAB环境下的仿真与实现,基于领航跟随法与人工势场法的多机器人编队避障技术研究:Matlab环境下的系统实现与验证,基于领航跟随法与人工势
资源内容介绍
基于领航跟随法与人工势场法的多机器人编队避障方法研究——MATLAB环境下的仿真与实现,基于领航跟随法与人工势场法的多机器人编队避障技术研究:Matlab环境下的系统实现与验证,基于领航跟随法与人工势场法的多机器人编队避障方法研究,编队采用领航跟随,避障与避碰采用人工势场法,matlab,关键词:多机器人编队;领航跟随法;人工势场法;避障方法;Matlab;避碰,基于Matlab的领航跟随与人工势场法多机器人编队避障研究 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90401904/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90401904/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于领航跟随法与人工势场法的多机器人编队避障方法研究</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff2">、</span>引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着机器人技术的不断发展<span class="ff3">,</span>多机器人系统在各种复杂环境下的协同作业显得越来越重要<span class="ff2">。</span>其中<span class="ff3">,</span>多</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">机器人编队控制技术是实现多机器人协同作业的关键技术之一<span class="ff2">。</span>然而<span class="ff3">,</span>在编队过程中<span class="ff3">,</span>机器人需要面</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">对各种障碍物和碰撞风险<span class="ff3">,</span>因此需要研究有效的避障和避碰方法<span class="ff2">。</span>本文将研究基于领航跟随法与人工</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">势场法的多机器人编队避障方法<span class="ff3">,</span>以<span class="_ _0"> </span><span class="ff4">MATLAB<span class="_ _1"> </span></span>为平台进行仿真实验<span class="ff2">。</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff2">、</span>领航跟随法</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">领航跟随法是一种常见的多机器人编队控制方法<span class="ff2">。</span>其基本思想是选择一个或多个机器人作为领航者<span class="ff3">,</span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">其他机器人则根据领航者的位置和速度信息<span class="ff3">,</span>进行跟随控制<span class="ff3">,</span>从而形成一定的编队形态<span class="ff2">。</span>这种方法具</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">有简单<span class="ff2">、</span>易实现等优点<span class="ff3">,</span>但在面对障碍物和动态环境时<span class="ff3">,</span>容易出现跟随失控等问题<span class="ff2">。</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff2">、</span>人工势场法</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">人工势场法是一种有效的避障和避碰方法<span class="ff2">。</span>其基本思想是在机器人周围构建一个人工势场<span class="ff3">,</span>根据势场</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">的梯度信息<span class="ff3">,</span>指导机器人避开障碍物和动态环境中的碰撞风险<span class="ff2">。</span>该方法具有响应速度快<span class="ff2">、</span>效果好等优</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">点<span class="ff3">,</span>可以有效地提高机器人的避障和避碰能力<span class="ff2">。</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff2">、</span>基于领航跟随法与人工势场法的多机器人编队避障方法</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">针对多机器人编队过程中出现的避障和避碰问题<span class="ff3">,</span>本文提出了基于领航跟随法与人工势场法的多机器</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">人编队避障方法<span class="ff2">。</span>在该方法中<span class="ff3">,</span>采用领航跟随法实现机器人的编队控制<span class="ff3">,</span>同时利用人工势场法指导机</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">器人避开障碍物和碰撞风险<span class="ff2">。</span>具体实现步骤如下<span class="ff3">:</span></div><div class="t m0 x1 h2 y13 ff4 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">构建人工势场<span class="ff3">:</span>在机器人周围构建一个人工势场<span class="ff3">,</span>根据障碍物的位置和大小等信息<span class="ff3">,</span>设置势场的</span></div><div class="t m0 x2 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">参数<span class="ff2">。</span></div><div class="t m0 x1 h2 y15 ff4 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">计算势场梯度<span class="ff3">:</span>根据势场的参数<span class="ff3">,</span>计算势场的梯度信息<span class="ff2">。</span></span></div><div class="t m0 x1 h2 y16 ff4 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff1">领航跟随与人工势场结合<span class="ff3">:</span>将领航跟随法和人工势场法相结合<span class="ff3">,</span>将势场梯度信息引入到领航跟随</span></div><div class="t m0 x2 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">控制中<span class="ff3">,</span>指导机器人根据领航者的位置和速度信息以及障碍物的位置和大小等信息进行避障和避</div><div class="t m0 x2 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">碰控制<span class="ff2">。</span></div><div class="t m0 x1 h2 y19 ff4 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _2"> </span>MATLAB<span class="_ _1"> </span><span class="ff1">仿真实验<span class="ff3">:</span>利用<span class="_ _0"> </span></span>MATLAB<span class="_ _1"> </span><span class="ff1">进行仿真实验<span class="ff3">,</span>验证该方法的可行性和有效性<span class="ff2">。</span></span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">五<span class="ff2">、<span class="ff4">MATLAB<span class="_ _1"> </span></span></span>仿真实验</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>