基于自适应无迹卡尔曼滤波算法的锂离子电池SOC估计技术研究,自适应无迹卡尔曼滤波算法在锂离子电池荷电状态SOC估计中的应用与优化,基于自适应无迹卡尔曼滤波算法(AUKF)锂离子电池荷电状态SOC估计

iRRbbATrZIP基于自适应无迹卡尔曼滤波算法锂离子电池荷电  271.1KB

资源文件列表:

ZIP 基于自适应无迹卡尔曼滤波算法锂离子电池荷电 大约有10个文件
  1. 1.jpg 94.58KB
  2. 基于自适应无迹卡尔曼.html 154.48KB
  3. 基于自适应无迹卡尔曼滤波算法的锂.txt 1.8KB
  4. 基于自适应无迹卡尔曼滤波算法的锂离子.txt 2.1KB
  5. 基于自适应无迹卡尔曼滤波算法的锂离子电池荷电状.html 156.34KB
  6. 基于自适应无迹卡尔曼滤波算法的锂离子电池荷电状态.txt 1.75KB
  7. 基于自适应无迹卡尔曼滤波算法的锂离子电池荷电状态估.txt 2.34KB
  8. 探索算法锂离子电池估计的深度解析在电动汽车.txt 2.16KB
  9. 本文将介绍一种基于自适应无迹卡.txt 1.35KB
  10. 标题基于自适应无迹卡尔曼滤波算法的锂离子电池荷电状.doc 1.81KB

资源介绍:

基于自适应无迹卡尔曼滤波算法的锂离子电池SOC估计技术研究,自适应无迹卡尔曼滤波算法在锂离子电池荷电状态SOC估计中的应用与优化,基于自适应无迹卡尔曼滤波算法(AUKF)锂离子电池荷电状态SOC估计。 ,基于AUKF算法;锂离子电池;SOC估计;荷电状态;无迹卡尔曼滤波算法;电池状态估计,基于AUKF算法的锂离子电池SOC估计技术研究

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90401728/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90401728/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">标题<span class="ff2">:</span>基于自适应无迹卡尔曼滤波算法的锂离子电池荷电状态<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>估计</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff2">:</span>随着电动汽车等领域的快速发展<span class="ff2">,</span>锂离子电池作为重要的能源储存装置之一<span class="ff2">,</span>其荷电状态<span class="ff2">(</span></div><div class="t m0 x1 h2 y3 ff3 fs0 fc0 sc0 ls0 ws0">State of Charge<span class="ff2">,</span>SOC<span class="ff2">)<span class="ff1">估计的准确性变得越来越重要<span class="ff4">。</span>本文基于自适应无迹卡尔曼滤波算法</span>(</span></div><div class="t m0 x1 h2 y4 ff3 fs0 fc0 sc0 ls0 ws0">Adaptive Unscented Kalman Filter<span class="ff2">,</span>AUKF<span class="ff2">),<span class="ff1">对锂离子电池的<span class="_ _0"> </span></span></span>SOC<span class="_ _1"> </span><span class="ff1">进行估计<span class="ff4">。</span>通过对实际</span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">测试数据的分析<span class="ff2">,</span>证明了<span class="_ _0"> </span><span class="ff3">AUKF<span class="_ _1"> </span></span>算法在<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>估计方面的优越性和有效性<span class="ff4">。</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">关键词<span class="ff2">:</span>锂离子电池<span class="ff2">;</span>荷电状态<span class="ff2">(<span class="ff3">SOC</span>)</span>估计<span class="ff2">;</span>自适应无迹卡尔曼滤波算法<span class="ff2">(<span class="ff3">AUKF</span>)</span></div><div class="t m0 x1 h2 y7 ff3 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">引言</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">电动汽车等能源领域的发展对锂离子电池荷电状态<span class="ff2">(<span class="ff3">State of Charge</span>,<span class="ff3">SOC</span>)</span>估计提出了更高的</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">要求<span class="ff4">。</span>准确的<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>估计能够提高电池系统的可靠性<span class="ff4">、</span>增强对电池工作状态的了解<span class="ff2">,</span>并有效延长电池的</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">寿命<span class="ff4">。</span>然而<span class="ff2">,</span>由于电池的非线性<span class="ff4">、</span>不确定性以及不可观测性等因素<span class="ff2">,<span class="ff3">SOC<span class="_ _1"> </span></span></span>估计面临着一定的挑战<span class="ff4">。</span>因</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">此<span class="ff2">,</span>本文提出了一种基于自适应无迹卡尔曼滤波算法<span class="ff2">(<span class="ff3">AUKF</span>)</span>的<span class="_ _0"> </span><span class="ff3">SOC<span class="_ _1"> </span></span>估计方法<span class="ff4">。</span></div><div class="t m0 x1 h2 yc ff3 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">锂离子电池<span class="_ _0"> </span></span>SOC<span class="_ _1"> </span><span class="ff1">估计的问题与挑战</span></div><div class="t m0 x1 h2 yd ff3 fs0 fc0 sc0 ls0 ws0">2.1.<span class="_"> </span><span class="ff1">锂离子电池的特性与模型</span></div><div class="t m0 x1 h2 ye ff3 fs0 fc0 sc0 ls0 ws0">2.2.<span class="_"> </span>SOC<span class="_ _1"> </span><span class="ff1">估计的问题</span></div><div class="t m0 x1 h2 yf ff3 fs0 fc0 sc0 ls0 ws0">2.3.<span class="_"> </span><span class="ff1">传统<span class="_ _0"> </span></span>SOC<span class="_ _1"> </span><span class="ff1">估计方法存在的不足</span></div><div class="t m0 x1 h2 y10 ff3 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff1">自适应无迹卡尔曼滤波算法</span></div><div class="t m0 x1 h2 y11 ff3 fs0 fc0 sc0 ls0 ws0">3.1.<span class="_"> </span><span class="ff1">无迹卡尔曼滤波算法原理</span></div><div class="t m0 x1 h2 y12 ff3 fs0 fc0 sc0 ls0 ws0">3.2.<span class="_"> </span><span class="ff1">自适应无迹卡尔曼滤波算法的改进</span></div><div class="t m0 x1 h2 y13 ff3 fs0 fc0 sc0 ls0 ws0">3.3.<span class="_"> </span>AUKF<span class="_ _1"> </span><span class="ff1">算法的优势与适用性</span></div><div class="t m0 x1 h2 y14 ff3 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _2"> </span><span class="ff1">基于<span class="_ _0"> </span></span>AUKF<span class="_ _1"> </span><span class="ff1">的<span class="_ _0"> </span></span>SOC<span class="_ _1"> </span><span class="ff1">估计方法</span></div><div class="t m0 x1 h2 y15 ff3 fs0 fc0 sc0 ls0 ws0">4.1.<span class="_"> </span>SOC<span class="_ _1"> </span><span class="ff1">估计模型建立</span></div><div class="t m0 x1 h2 y16 ff3 fs0 fc0 sc0 ls0 ws0">4.2.<span class="_"> </span>AUKF<span class="_ _1"> </span><span class="ff1">算法在<span class="_ _0"> </span></span>SOC<span class="_ _1"> </span><span class="ff1">估计中的应用</span></div><div class="t m0 x1 h2 y17 ff3 fs0 fc0 sc0 ls0 ws0">4.3.<span class="_"> </span><span class="ff1">算法参数的选择与自适应调节</span></div><div class="t m0 x1 h2 y18 ff3 fs0 fc0 sc0 ls0 ws0">5.<span class="_ _2"> </span><span class="ff1">实验结果与分析</span></div><div class="t m0 x1 h2 y19 ff3 fs0 fc0 sc0 ls0 ws0">5.1.<span class="_"> </span><span class="ff1">实验环境与数据采集</span></div><div class="t m0 x1 h2 y1a ff3 fs0 fc0 sc0 ls0 ws0">5.2.<span class="_"> </span><span class="ff1">基于<span class="_ _0"> </span></span>AUKF<span class="_ _1"> </span><span class="ff1">的<span class="_ _0"> </span></span>SOC<span class="_ _1"> </span><span class="ff1">估计结果分析</span></div><div class="t m0 x1 h2 y1b ff3 fs0 fc0 sc0 ls0 ws0">5.3.<span class="_"> </span><span class="ff1">与传统方法的对比分析</span></div><div class="t m0 x1 h2 y1c ff3 fs0 fc0 sc0 ls0 ws0">6.<span class="_ _2"> </span><span class="ff1">结论与展望</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha