STM32F103C8T6的卡尔曼中位值滤波ADC采集算法:同步对比输出源程序与波形展示,STM32F103C8T6的卡尔曼滤波与中位值滤波算法融合下的ADC采集同步对比源程序,STM32 ADC采集
资源内容介绍
STM32F103C8T6的卡尔曼中位值滤波ADC采集算法:同步对比输出源程序与波形展示,STM32F103C8T6的卡尔曼滤波与中位值滤波算法融合下的ADC采集同步对比源程序,STM32 ADC采集滤波算法,卡尔曼 中位值 同步对比输出源程序,芯片采用STM32f103c8t6.算法采用卡尔曼滤波算法中位值滤波算法,波形输出正常采集的卡尔曼 中位值三个波形输出,程序注释详细。,核心关键词:STM32 ADC采集;滤波算法;卡尔曼滤波;中位值滤波;同步对比输出;源程序;STM32f103c8t6芯片;波形输出;程序注释。,STM32f103c8t6中的ADC数据采集及混合滤波算法(卡尔曼滤波+中位值)同步输出源程序 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90401627/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90401627/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">STM32 ADC<span class="_ _0"> </span><span class="ff2">采集滤波算法<span class="ff3">,</span>卡尔曼中位值同步对比输出源程序<span class="ff3">,</span>芯片采用<span class="_ _1"> </span></span>STM32f103c8t6<span class="ff4">。<span class="ff2">算法</span></span></div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">采用卡尔曼滤波算法和中位值滤波算法<span class="ff3">,</span>本文将详细讨论这两种滤波算法在<span class="_ _1"> </span><span class="ff1">STM32 ADC<span class="_ _0"> </span></span>采集中的应</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">用<span class="ff4">。</span></div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">在实际应用中<span class="ff3">,<span class="ff1">ADC<span class="_ _0"> </span></span></span>采集到的原始信号往往包含噪声和干扰<span class="ff3">,</span>如何有效地滤除这些噪声成为一个重要</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">的问题<span class="ff4">。</span>卡尔曼滤波算法是一种递归的滤波算法<span class="ff3">,</span>能够通过对系统状态的估计来减少噪声的影响<span class="ff4">。</span>而</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">中位值滤波算法则是一种简单有效的非线性滤波算法<span class="ff3">,</span>通过对一组数据中的中间值进行计算来滤除异</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">常值<span class="ff4">。</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">在本文中<span class="ff3">,</span>我们将介绍如何在<span class="_ _1"> </span><span class="ff1">STM32f103c8t6<span class="_ _0"> </span></span>芯片上应用卡尔曼滤波算法和中位值滤波算法来提高</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">ADC<span class="_ _0"> </span><span class="ff2">采集信号的质量<span class="ff4">。</span>首先<span class="ff3">,</span>我们将对这两种滤波算法进行详细的介绍和原理分析<span class="ff4">。</span>然后<span class="ff3">,</span>我们将介</span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">绍如何在<span class="_ _1"> </span><span class="ff1">STM32f103c8t6<span class="_ _0"> </span></span>芯片上实现这两种滤波算法<span class="ff3">,</span>并提供详细的源程序注释<span class="ff4">。</span>最后<span class="ff3">,</span>我们将通</div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">过对比实验来验证这两种滤波算法的效果<span class="ff3">,</span>并对其优缺点进行分析<span class="ff4">。</span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">卡尔曼滤波算法是一种基于状态估计的滤波算法<span class="ff3">,</span>其核心思想是通过对系统状态的递归估计来提高信</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">号的精确度和可靠性<span class="ff4">。</span>该算法结合了系统模型和观测模型<span class="ff3">,</span>并利用先验信息和测量数据进行状态估计</div><div class="t m0 x1 h2 ye ff4 fs0 fc0 sc0 ls0 ws0">。<span class="ff2">在<span class="_ _1"> </span><span class="ff1">STM32f103c8t6<span class="_ _0"> </span></span>芯片上应用卡尔曼滤波算法<span class="ff3">,</span>首先需要建立系统模型和观测模型<span class="ff3">,</span>并根据采集</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">到的<span class="_ _1"> </span><span class="ff1">ADC<span class="_ _0"> </span></span>信号进行状态估计<span class="ff4">。</span>我们将详细介绍卡尔曼滤波算法的数学原理<span class="ff3">,</span>并给出在</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">STM32f103c8t6<span class="_ _0"> </span><span class="ff2">芯片上实现该算法的源程序<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">中位值滤波算法是一种简单有效的非线性滤波算法<span class="ff3">,</span>通过对一组数据中的中间值进行计算来滤除异常</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">值和噪声<span class="ff4">。</span>该算法适用于信号中存在较多异常值或噪声的情况<span class="ff4">。</span>在<span class="_ _1"> </span><span class="ff1">STM32f103c8t6<span class="_ _0"> </span></span>芯片上应用中位</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">值滤波算法<span class="ff3">,</span>我们首先需要对采集到的<span class="_ _1"> </span><span class="ff1">ADC<span class="_ _0"> </span></span>信号进行排序<span class="ff3">,</span>然后计算中</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>