基于LSTM的时间序列预测模型:单输入单输出预测,数据存入Excel,性能评估指标包括决定系数R2、平均绝对误差MAE及平均相对误差MBE的详解代码,基于LSTM的时间序列预测模型:单输入单输出预测
资源内容介绍
基于LSTM的时间序列预测模型:单输入单输出预测,数据存入Excel,性能评估指标包括决定系数R2、平均绝对误差MAE及平均相对误差MBE的详解代码,基于LSTM的时间序列预测模型:单输入单输出预测,含详细注释代码,数据存入Excel,性能评估指标包括R2系数、MAE和MBE,基于长短期记忆网络算法LSTM的时间序列预测单输入单输出预测代码含详细注释,不负责数据存入Excel,替方便,指标计算有决定系数R2,平均绝对误差MAE,平均相对误差MBE,基于长短期记忆网络算法LSTM; 时间序列预测; 单输入单输出; 代码注释; Excel存储; 指标计算(R2; MAE; MBE),基于LSTM算法的Excel数据时间序列预测:单输入单输出模型,含注释与评估指标 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90403921/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90403921/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于长短期记忆网络算法<span class="_ _0"> </span><span class="ff2">LSTM<span class="_ _1"> </span></span>的时间序列预测是一种常用的时间序列分析方法<span class="ff3">,</span>它通过学习历史数</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">据的模式<span class="ff3">,</span>利用神经网络的记忆和推理能力来预测未来的数值<span class="ff4">。</span>在实际应用中<span class="ff3">,<span class="ff2">LSTM<span class="_ _1"> </span></span></span>算法通常涉及</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">到单输入单输出预测<span class="ff3">,</span>即只使用一个输入值来预测一个输出值<span class="ff4">。</span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">为了更好地理解这一算法<span class="ff3">,</span>本文将以一个具体的例子来解释基于<span class="_ _0"> </span><span class="ff2">LSTM<span class="_ _1"> </span></span>的时间序列预测<span class="ff4">。</span>我们将使用</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">Python<span class="_ _1"> </span><span class="ff1">编程语言来实现该算法<span class="ff3">,</span>并使用<span class="_ _0"> </span></span>Excel<span class="_ _1"> </span><span class="ff1">作为数据存储和计算指标的工具<span class="ff4">。</span>在编写代码时<span class="ff3">,</span>我</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">们将对每个步骤进行详细注释<span class="ff3">,</span>以便读者了解算法的实现细节<span class="ff4">。</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">首先<span class="ff3">,</span>我们需要准备一组时间序列数据<span class="ff3">,</span>这些数据可以是任何具有时间顺序的数值<span class="ff4">。</span>在本例中<span class="ff3">,</span>我们</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">将使用某公司过去一年的销售数据作为时间序列数据<span class="ff4">。</span>这些数据将被存储在<span class="_ _0"> </span><span class="ff2">Excel<span class="_ _1"> </span></span>文件中<span class="ff3">,</span>以便于后</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">续的数据操作和分析<span class="ff4">。</span></div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">在编写<span class="_ _0"> </span><span class="ff2">LSTM<span class="_ _1"> </span></span>算法之前<span class="ff3">,</span>我们可以首先计算一些指标来评估预测结果的准确性<span class="ff4">。</span>其中<span class="ff3">,</span>决定系数<span class="_ _0"> </span><span class="ff2">R2<span class="ff4">、</span></span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">平均绝对误差<span class="_ _0"> </span><span class="ff2">MAE<span class="_ _1"> </span></span>和平均相对误差<span class="_ _0"> </span><span class="ff2">MBE<span class="_ _1"> </span></span>是常用的指标<span class="ff4">。</span>决定系数<span class="_ _0"> </span><span class="ff2">R2<span class="_ _1"> </span></span>可以衡量预测值与实际值之间的</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">相关程度<span class="ff3">,</span>而<span class="_ _0"> </span><span class="ff2">MAE<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff2">MBE<span class="_ _1"> </span></span>则可以评估预测误差的大小和方向<span class="ff4">。</span></div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">接下来<span class="ff3">,</span>我们将开始编写<span class="_ _0"> </span><span class="ff2">LSTM<span class="_ _1"> </span></span>算法的代码<span class="ff4">。</span>首先<span class="ff3">,</span>我们需要导入所需的<span class="_ _0"> </span><span class="ff2">Python<span class="_ _1"> </span></span>库<span class="ff3">,</span>例如<span class="_ _0"> </span><span class="ff2">numpy<span class="ff4">、</span></span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">pandas<span class="_ _1"> </span><span class="ff1">和<span class="_ _0"> </span></span>tensorflow<span class="ff4">。<span class="ff1">然后<span class="ff3">,</span>我们可以读取<span class="_ _0"> </span></span></span>Excel<span class="_ _1"> </span><span class="ff1">文件中的数据<span class="ff3">,</span>并进行必要的数据处理和预</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">处理<span class="ff4">。</span>这些步骤包括数据清洗<span class="ff4">、</span>缺失值处理<span class="ff4">、</span>特征工程等<span class="ff4">。</span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">接下来<span class="ff3">,</span>我们将构建<span class="_ _0"> </span><span class="ff2">LSTM<span class="_ _1"> </span></span>神经网络模型<span class="ff4">。</span>在模型的构建过程中<span class="ff3">,</span>我们可以选择适当的网络结构<span class="ff4">、</span>激</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">活函数<span class="ff4">、</span>优化器等参数<span class="ff3">,</span>并设置合适的训练和验证策略<span class="ff4">。</span>在模型训练过程中<span class="ff3">,</span>我们可以使用训练数据</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">来调整模型的权重和偏置<span class="ff3">,</span>以便使其能够更好地拟合数据<span class="ff4">。</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">在模型训练完成后<span class="ff3">,</span>我们可以使用测试数据来评估模型的性能<span class="ff4">。</span>通过将测试数据输入模型中<span class="ff3">,</span>我们可</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">以得到模型对未来数值的预测结果<span class="ff4">。</span>然后<span class="ff3">,</span>我们可以使用之前计算的指标<span class="ff3">(</span>如<span class="_ _0"> </span><span class="ff2">R2<span class="ff4">、</span>MAE<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff2">MBE<span class="ff3">)</span></span>来</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">评估预测结果的准确性<span class="ff4">。</span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">最后<span class="ff3">,</span>我们可以将预测结果可视化<span class="ff3">,</span>并进行详细的分析和讨论<span class="ff4">。</span>通过观察预测结果和指标值<span class="ff3">,</span>我们可</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">以得出一些结论和洞察<span class="ff3">,</span>从而对未来的趋势和变化进行预测和决策<span class="ff4">。</span></div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">总结起来<span class="ff3">,</span>本文介绍了基于<span class="_ _0"> </span><span class="ff2">LSTM<span class="_ _1"> </span></span>算法的时间序列预测<span class="ff3">,</span>重点讨论了单输入单输出的预测方法<span class="ff4">。</span>通过</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">编写详细注释的代码<span class="ff3">,</span>并使用<span class="_ _0"> </span><span class="ff2">Excel<span class="_ _1"> </span></span>进行数据存储和指标计算<span class="ff3">,</span>我们可以有效地实现该算法<span class="ff3">,</span>并进行</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">准确的时间序列预测和分析<span class="ff4">。</span>通过本文的学习和实践<span class="ff3">,</span>读者可以深入了解<span class="_ _0"> </span><span class="ff2">LSTM<span class="_ _1"> </span></span>算法及其在时间序列</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">分析中的应用<span class="ff3">,</span>并在实际项目中进行应用和优化<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>