下载资源前端资源详情
模型基于观测器匝间短路故障估计
大小:495.66KB
价格:25积分
下载量:0
评分:
5.0
上传者:ZWqVFyuW
更新日期:2025-09-22

基于SOI观测器的Simulink模型匝间短路故障估计与故障相及程度辨识研究,基于SOI观测器的Matlab Simulink模型匝间短路故障估计与故障相及程度辨识研究,Matlab Simulin

资源文件列表(大概)

文件名
大小
1.jpg
79.71KB
基于模型的观测器在匝间短路故障估计中的.html
135.19KB
技术博客文章标题模型中的观测.html
133.94KB
标题基于观测器的匝间短路故障估计与辨识.txt
2.09KB
标题基于观测器的匝间短路故障估计与辨识技术.txt
2.02KB
标题基于观测器的匝间短路故障估计及其故障.doc
2.53KB
模型分析基于观测器匝间短路故障估计与诊断一.txt
2.07KB
模型在故障诊断领域.html
135.28KB
模型基于观测器匝间短路故障估计故障相辩识故.html
134.3KB
模型基于观测器的匝间短路故障.html
135.33KB
模型技术分析观测.html
134.84KB

资源内容介绍

基于SOI观测器的Simulink模型匝间短路故障估计与故障相及程度辨识研究,基于SOI观测器的Matlab Simulink模型匝间短路故障估计与故障相及程度辨识研究,Matlab Simulink模型基于SOI观测器匝间短路故障估计 故障相辩识故障程度辩识可以设置不通故障程度的短路,Matlab; Simulink模型; SOI观测器; 匝间短路故障估计; 故障相辩识; 故障程度辩识; 设置故障程度。,基于Matlab Simulink的SOI观测器:匝间短路故障估计与相、程度辨识系统
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90400403/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90400403/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">标题<span class="ff2">:</span>基于<span class="_ _0"> </span><span class="ff3">SOI<span class="_ _1"> </span></span>观测器的匝间短路故障估计及其故障相辨识方法研究</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff2">:</span>本文基于<span class="_ _0"> </span><span class="ff3">SOI<span class="_ _1"> </span></span>观测器的匝间短路故障估计在电力系统中的应用进行了研究<span class="ff4">。</span>首先介绍了<span class="_ _0"> </span><span class="ff3">SOI</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">观测器的原理及其在故障辨识中的重要性<span class="ff4">。</span>然后<span class="ff2">,</span>针对电力系统中可能出现的不同故障程度的短路问</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">题<span class="ff2">,</span>提出了一种故障相辨识方法<span class="ff2">,</span>并通过<span class="_ _0"> </span><span class="ff3">Matlab Simulink<span class="_ _1"> </span></span>模型进行仿真实验<span class="ff4">。</span>最后<span class="ff2">,</span>对实验结果</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">进行分析<span class="ff2">,</span>并给出了可行的优化方案<span class="ff2">,</span>以提高故障程度的辨识性能<span class="ff4">。</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">关键词<span class="ff2">:<span class="ff3">SOI<span class="_ _1"> </span></span></span>观测器<span class="ff4">、</span>匝间短路故障<span class="ff4">、</span>故障相辨识<span class="ff4">、</span>故障程度辨识<span class="ff4">、<span class="ff3">Matlab Simulink<span class="_ _1"> </span></span></span>模型</div><div class="t m0 x1 h2 y7 ff3 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">引言</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">在电力系统中<span class="ff2">,</span>匝间短路故障是一种常见的故障类型<span class="ff2">,</span>会导致设备损坏<span class="ff4">、</span>线路故障等各种问题<span class="ff4">。</span>因此</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">对匝间短路故障进行准确的估计和相辨识具有重要意义<span class="ff4">。<span class="ff3">SOI<span class="_ _1"> </span></span></span>观测器作为一种常用的故障监测工具</span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">在故障辨识中具有广泛的应用价值<span class="ff4">。</span></span></div><div class="t m0 x1 h2 yb ff3 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>SOI<span class="_ _1"> </span><span class="ff1">观测器原理及其在匝间短路故障中的应用</span></div><div class="t m0 x1 h2 yc ff3 fs0 fc0 sc0 ls0 ws0">2.1.<span class="_"> </span>SOI<span class="_ _1"> </span><span class="ff1">观测器原理</span></div><div class="t m0 x1 h2 yd ff3 fs0 fc0 sc0 ls0 ws0">SOI<span class="_ _1"> </span><span class="ff1">观测器是一种基于光学原理的故障监测设备<span class="ff2">,</span>通过测量光纤中传输的光信号的强度变化来判断系</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">统中是否存在故障<span class="ff4">。<span class="ff3">SOI<span class="_ _1"> </span></span></span>观测器具有高精度<span class="ff4">、</span>实时性强等特点<span class="ff2">,</span>在电力系统中有广泛的应用<span class="ff4">。</span></div><div class="t m0 x1 h2 yf ff3 fs0 fc0 sc0 ls0 ws0">2.2.<span class="_"> </span>SOI<span class="_ _1"> </span><span class="ff1">观测器在匝间短路故障中的应用</span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">在电力系统中<span class="ff2">,</span>匝间短路故障是一种常见的故障类型<span class="ff4">。</span>通过使用<span class="_ _0"> </span><span class="ff3">SOI<span class="_ _1"> </span></span>观测器能够准确地监测匝间短路</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">故障的发生<span class="ff2">,</span>并通过测量光信号的强度变化来估计故障的程度<span class="ff4">。</span></div><div class="t m0 x1 h2 y12 ff3 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff1">匝间短路故障的故障相辨识方法</span></div><div class="t m0 x1 h2 y13 ff3 fs0 fc0 sc0 ls0 ws0">3.1.<span class="_"> </span><span class="ff1">故障相辨识原理</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">故障相辨识是指通过对系统故障的特征进行分析和判断<span class="ff2">,</span>确定故障相的位置和类型<span class="ff4">。</span>对于匝间短路故</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">障<span class="ff2">,</span>可以通过匝间阻抗测量等手段来进行辨识<span class="ff4">。</span></div><div class="t m0 x1 h2 y16 ff3 fs0 fc0 sc0 ls0 ws0">3.2.<span class="_"> </span><span class="ff1">基于<span class="_ _0"> </span></span>SOI<span class="_ _1"> </span><span class="ff1">观测器的故障相辨识方法</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">本文提出一种基于<span class="_ _0"> </span><span class="ff3">SOI<span class="_ _1"> </span></span>观测器的故障相辨识方法<span class="ff4">。</span>该方法通过测量光信号的强度变化来判断匝间短路</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">故障的位置和类型<span class="ff2">,</span>并通过对匝间阻抗的分析来估计故障的程度<span class="ff4">。</span></div><div class="t m0 x1 h2 y19 ff3 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _2"> </span>Matlab Simulink<span class="_ _1"> </span><span class="ff1">模型设计与仿真实验</span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">为了验证所提出的故障相辨识方法的有效性<span class="ff2">,</span>本文设计了一个基于<span class="_ _0"> </span><span class="ff3">Matlab Simulink<span class="_ _1"> </span></span>的仿真模型<span class="ff4">。</span></div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">该模型能够模拟不同故障程度的匝间短路<span class="ff2">,</span>并通过<span class="_ _0"> </span><span class="ff3">SOI<span class="_ _1"> </span></span>观测器对故障进行监测和辨识<span class="ff4">。</span></div><div class="t m0 x1 h2 y1c ff3 fs0 fc0 sc0 ls0 ws0">5.<span class="_ _2"> </span><span class="ff1">结果与分析</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>

用户评论 (0)

发表评论

captcha

相关资源

解析PSO多目标搜索算法:应对帕累托问题的非劣解集与选择策略,深入解析PSO多目标搜索算法:帕累托问题的非劣解集与实际应用的抉择,视频讲解PSO多目标搜索算法(帕累托问题)多目标搜索算法比单目标算法

解析PSO多目标搜索算法:应对帕累托问题的非劣解集与选择策略,深入解析PSO多目标搜索算法:帕累托问题的非劣解集与实际应用的抉择,视频讲解PSO多目标搜索算法(帕累托问题)多目标搜索算法比单目标算法更加贴近实际问题,多目标最终得到的是一个非劣解集构成pareto面,从中根据实际问题的需要选择一个作为该问题的最终解。,PSO; 多目标搜索算法; 帕累托问题; 非劣解集; pareto面; 实际问题的最终解,视频详解PSO多目标搜索算法,助你攻克帕累托问题。

387.2KB45积分

Matlab结合NSGA-II算法与Maxwell实现多变量结构参数优化仿真:永磁电机多目标振动噪声优化研究,基于Matlab的NSGA-II算法与Maxwell软件实时交互结构参数优化仿真案例-三

Matlab结合NSGA-II算法与Maxwell实现多变量结构参数优化仿真:永磁电机多目标振动噪声优化研究,基于Matlab的NSGA-II算法与Maxwell软件实时交互结构参数优化仿真案例——三目标多变量永磁电机电磁振动噪声研究,matlab使用NSGA-II算法联合maxwell进行结构参数优化仿真案例,数据实时交互。五变量,三优化目标(齿槽转矩,平均转矩,转矩脉动)maxwell ,optislang 谐响应,,多物理场计算永磁电机多目标优化参数化建模电磁振动噪声仿真 ,NSGA-II算法;Maxwell仿真;结构参数优化;数据实时交互;五变量;三优化目标;齿槽转矩;平均转矩;转矩脉动;Optislang;谐响应;多物理场计算;永磁电机多目标优化;参数化建模;电磁振动噪声仿真。,MATLAB中的NSGA-II算法在Maxwell中的结构参数多目标优化与实时数据交互案例

275.23KB37积分

自动避障路径选择与Matlab仿真算法研究及自主编写路径规划算法的探索,基于Matlab平台的自动避障路径规划算法仿真研究,自动避障路径选择Matlab路径规划算法自己研究编写路径规划仿真,自

自动避障路径选择与Matlab仿真算法研究及自主编写路径规划算法的探索,基于Matlab平台的自动避障路径规划算法仿真研究,自动避障路径选择Matlab路径规划算法自己研究编写路径规划仿真,自动避障; 路径选择; Matlab路径规划算法; 仿真编写,基于Matlab的自动避障路径规划算法研究与仿真实现

659.33KB29积分

汇川PLCAM系列脉冲控制伺服功能快速应用案例资料:总线控制下的脉冲控制技术及其编写方法详解,汇川PLCAM系列:脉冲控制伺服功能的快速实践案例与总线控制的深度解析,汇川plcam系列脉冲控制伺服功能

汇川PLCAM系列脉冲控制伺服功能快速应用案例资料:总线控制下的脉冲控制技术及其编写方法详解,汇川PLCAM系列:脉冲控制伺服功能的快速实践案例与总线控制的深度解析,汇川plcam系列脉冲控制伺服功能快案例资料,总线控制已经很常见了,有时候需要用到脉冲控制,这个案例介绍了 脉冲的写法,汇川PLCAM系列;脉冲控制伺服功能;案例资料;总线控制;脉冲写法;快案例,汇川PLCAM系列脉冲控制伺服功能案例:总线控制下的脉冲编写应用

2.82MB33积分