基于Tent映射的非线性控制参数策略改进灰狼优化算法(Matlab实现,运行30次数据效果展示),基于Tent映射的非线性控制参数策略改进灰狼优化算法(Matlab实现,运行30次数据效果展示),一种
资源内容介绍
基于Tent映射的非线性控制参数策略改进灰狼优化算法(Matlab实现,运行30次数据效果展示),基于Tent映射的非线性控制参数策略改进灰狼优化算法(Matlab实现,运行30次数据效果展示),一种基于Tent映射的混合灰狼优化的改进算法(Matlab,代码复现,效果与原文一致,数值为运行30次数据)1.tent映射2.非线性控制参数策略(有代码,可以出图)3.pso思想,1.Tent映射; 2.混合灰狼优化; 3.非线性控制参数策略; 4.PSO思想; 5.Matlab复现; 6.运行数据。,基于Tent映射与非线性控制参数策略的混合灰狼优化改进算法(PSO思想,Matlab复现)——数值稳定性与30次运行结果分析 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90434802/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90434802/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">Tent<span class="_ _0"> </span></span>映射的混合灰狼优化算法改进及其<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _0"> </span></span>实现</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一、引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">在优化<span class="_ _1"></span>算法领<span class="_ _1"></span>域,<span class="ff2">Tent<span class="_"> </span></span>映射<span class="_ _1"></span>作为一<span class="_ _1"></span>种非线<span class="_ _1"></span>性映射<span class="_ _1"></span>被广泛<span class="_ _1"></span>应用于<span class="_ _1"></span>各种优<span class="_ _1"></span>化问题<span class="_ _1"></span>中。本<span class="_ _1"></span>文将介</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">绍一种基于<span class="_ _0"> </span><span class="ff2">Tent<span class="_ _0"> </span></span>映射的混合灰狼优化算法的改进策略,<span class="_ _2"></span>并通过<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _0"> </span></span>进行代码复现,<span class="_ _2"></span>以验</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">证其效果<span class="_ _1"></span>与原文一致性<span class="_ _1"></span>。同时,本<span class="_ _1"></span>文还将介绍<span class="_ _1"></span>一种非线性控<span class="_ _1"></span>制参数策略<span class="_ _1"></span>,并通过<span class="_ _0"> </span><span class="ff2">PSO<span class="_"> </span></span>思想</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">来提高算法的性能。</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">二、<span class="ff2">Tent<span class="_ _0"> </span></span>映射</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">Tent<span class="_ _0"> </span><span class="ff1">映射是一种非线性映射,<span class="_ _2"></span>其数学表达式为<span class="_ _3"></span>:<span class="_ _3"></span><span class="ff2">y=max(0,min(1,ax+b))<span class="ff1">。<span class="_ _2"></span>其中,<span class="_ _2"></span><span class="ff2">a<span class="_"> </span><span class="ff1">和<span class="_ _0"> </span></span>b<span class="_ _0"> </span><span class="ff1">为<span class="_ _0"> </span></span>Tent</span></span></span></span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">映射的<span class="_ _1"></span>参数,<span class="_ _1"></span>通过调<span class="_ _1"></span>整这两<span class="_ _1"></span>个参数<span class="_ _1"></span>可以改<span class="_ _1"></span>变映射<span class="_ _1"></span>的形状<span class="_ _1"></span>和性质<span class="_ _1"></span>。在优<span class="_ _1"></span>化算法<span class="_ _1"></span>中,<span class="ff2">Tent<span class="_"> </span></span>映射</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">被用来产生一系列的随机数,以增加算法的搜索范围和搜索速度。</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">三、基于<span class="_ _0"> </span><span class="ff2">Tent<span class="_ _0"> </span></span>映射的混合灰狼优化算法</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">灰狼优化算法是一种模拟灰狼社会行为的群体智能优化算法。<span class="_ _3"></span>在灰狼优化算法中,<span class="_ _3"></span>每个个体</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">代表一个可能的解,<span class="_ _3"></span>通过个体之间的竞争和合作来寻找最优解。<span class="_ _3"></span>为了进一步提高灰狼优化算</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">法的性能,本文提出了一种基于<span class="_ _0"> </span><span class="ff2">Tent<span class="_ _0"> </span></span>映射的混合灰狼优化算法。</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">在该算法中,<span class="_ _4"></span>我们采用<span class="_ _0"> </span><span class="ff2">Tent<span class="_ _0"> </span></span>映射来生成初始解集,<span class="_ _4"></span>并在算法的迭代过程中使用<span class="_ _0"> </span><span class="ff2">Tent<span class="_ _0"> </span></span>映射来</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">调整搜索范围和搜索速度。<span class="_ _3"></span>同时,<span class="_ _3"></span>我们还采用了一种非线性控制参数策略来动态调整灰狼优</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">化算法的参数,以提高算法的适应性和搜索能力。</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">四、非线性控制参数策略与<span class="_ _0"> </span><span class="ff2">PSO<span class="_ _0"> </span></span>思想</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">非线性控制参数策略是一种动态调整算法参数的策略。<span class="_ _3"></span>通过分析问题的特点和规律,<span class="_ _3"></span>我们可</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">以制定一种非线性的控制参数策略来动态调整灰狼优化算法的参数。<span class="_ _5"></span>这样可以使得算法在不</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">同的搜索阶段能够采用不同的搜索策略,从而提高算法的性能。</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">PSO<span class="ff1">(粒<span class="_ _1"></span>子群优<span class="_ _1"></span>化)<span class="_ _1"></span>思想是<span class="_ _1"></span>一种基<span class="_ _1"></span>于群体<span class="_ _1"></span>智能的<span class="_ _1"></span>优化思<span class="_ _1"></span>想。我<span class="_ _1"></span>们将<span class="_ _0"> </span></span>PSO<span class="_"> </span><span class="ff1">思想<span class="_ _1"></span>引入到<span class="_ _1"></span>混合灰</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">狼优化算法中,<span class="_ _2"></span>通过模拟粒子的运动和行为来优化问题的解。<span class="_ _4"></span>具体而言,<span class="_ _2"></span>我们可以在每次迭</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">代中生成一定数量的粒子,<span class="_ _3"></span>并根据粒子的适应度和位置信息来更新个体的位置和速度,<span class="_ _3"></span>以寻</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">找更好的解。</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">五、<span class="ff2">Matlab<span class="_ _0"> </span></span>实现与数值实验</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">为了验证基于<span class="_ _0"> </span><span class="ff2">Tent<span class="_ _0"> </span></span>映射的混合灰狼优化算法的效果和原文一致性,<span class="_ _6"></span>我们使用<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _0"> </span></span>进行了</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">代码复现。我们分别运行了<span class="_ _0"> </span><span class="ff2">30<span class="_ _0"> </span></span>次实验,并记录了每次实验的运行时间和最优解。通过对比</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">原文中的数据和我们的实验数据,<span class="_ _5"></span>我们发现我们的改进算法在大多数情况下都能够取得与原</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">文一致的效果。</div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0">同时,我<span class="_ _1"></span>们还通过非线<span class="_ _1"></span>性控制参数<span class="_ _1"></span>策略和<span class="_ _0"> </span><span class="ff2">PSO<span class="_"> </span></span>思想的引入<span class="_ _1"></span>来进一步提<span class="_ _1"></span>高算法的性能<span class="_ _1"></span>。在实</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>