锂电池SOC估计:基于扩展卡尔曼滤波与马里兰数据的HPPC及1C放电工况下的查表离线参数分析,锂电池SOC估计:基于扩展卡尔曼滤波与马里兰数据的多种温度、工况查表离线参数分析,锂电池SOC估计扩展卡尔
资源内容介绍
锂电池SOC估计:基于扩展卡尔曼滤波与马里兰数据的HPPC及1C放电工况下的查表离线参数分析,锂电池SOC估计:基于扩展卡尔曼滤波与马里兰数据的多种温度、工况查表离线参数分析,锂电池SOC估计扩展卡尔曼滤波估算SOC马里兰数据三种温度:0 25 45三套查表离线参数两种工况:HPPC 1C放电,锂电池SOC估计;扩展卡尔曼滤波估算SOC;马里兰数据;三种温度;三套查表离线参数;两种工况,基于扩展卡尔曼滤波的锂电池SOC精确估计:马里兰数据三温三参两种工况对比 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90434204/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90434204/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">### <span class="_ _0"> </span><span class="ff2">锂电池<span class="_ _0"> </span></span>SOC<span class="_"> </span><span class="ff2">估计:扩展卡尔曼滤波技术的实践与探索</span></div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">#### <span class="_ _0"> </span><span class="ff2">引言</span></div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">在电动汽车与移动设备的日益普及的今天,<span class="_ _1"></span>电池技术作为其核心之一,<span class="_ _1"></span>显得尤为重要。<span class="_ _1"></span>电池</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">的<span class="_ _0"> </span><span class="ff1">SOC<span class="_ _2"></span></span>(<span class="ff1">State of Charge</span>,<span class="_ _3"></span>荷电状态)<span class="_ _3"></span>估计是电池管理系统中不可或缺的一环。<span class="_ _3"></span>本文将围绕</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">锂电池<span class="_ _0"> </span><span class="ff1">SOC<span class="_"> </span></span>估计的扩展卡尔曼滤波技术,结合马里兰数据集,探讨三种不同温度下的<span class="_ _0"> </span><span class="ff1">SOC</span></div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">估算方法。</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">#### <span class="_ _0"> </span><span class="ff2">背景知识</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">扩展卡尔<span class="_ _2"></span>曼滤波<span class="_ _2"></span>(<span class="ff1">Extended Kalman Filter<span class="_ _2"></span></span>,<span class="ff1">EKF</span>)<span class="_ _2"></span>是一种基<span class="_ _2"></span>于递归<span class="_ _2"></span>的估计<span class="_ _2"></span>算法,通<span class="_ _2"></span>过在线<span class="_ _2"></span>的</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">模型和噪声分析,<span class="_ _1"></span>提供一种计算上的最佳估算。<span class="_ _1"></span>对于锂电池来说,<span class="_ _1"></span>通过这种方式可以有效监</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">测其<span class="_ _0"> </span><span class="ff1">SOC<span class="_"> </span></span>状态,从而为电池的充电、放电等操作提供依据。</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">#### <span class="_ _0"> </span><span class="ff2">实验数据与方法</span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">我们采<span class="_ _2"></span>用了<span class="_ _2"></span>马里兰<span class="_ _2"></span>大学<span class="_ _2"></span>提供的<span class="_ _2"></span>电池<span class="_ _2"></span>数据集<span class="_ _2"></span>,其<span class="_ _2"></span>中包<span class="_ _2"></span>括了不<span class="_ _2"></span>同温<span class="_ _2"></span>度(<span class="ff1">0<span class="_ _2"></span>°C<span class="_ _2"></span></span>、<span class="ff1">25°<span class="_ _2"></span>C</span>、<span class="_ _2"></span><span class="ff1">45°C<span class="_ _2"></span></span>)<span class="_ _4"></span>、不</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">同工<span class="_ _2"></span>况(<span class="_ _2"></span><span class="ff1">HPPC<span class="_"> </span></span>标准工<span class="_ _2"></span>况<span class="_ _2"></span>、<span class="ff1">1C<span class="_"> </span></span>放电<span class="_ _2"></span>工况<span class="_ _2"></span>)<span class="_ _2"></span>下的<span class="_ _2"></span>电池<span class="_ _2"></span>性能<span class="_ _2"></span>数据<span class="_ _2"></span>。<span class="_ _2"></span>此外<span class="_ _2"></span>,我<span class="_ _2"></span>们还<span class="_ _2"></span>准<span class="_ _2"></span>备了<span class="_ _2"></span>三套<span class="_ _2"></span>查</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">表离线参数,以应对不同条件下的估算需求。</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">#### <span class="_ _0"> </span><span class="ff2">温度与工况的影响</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">在<span class="_ _5"> </span><span class="ff1">0°<span class="_ _2"></span>C<span class="_"> </span></span>的低<span class="_ _2"></span>温环<span class="_ _2"></span>境<span class="_ _2"></span>下,<span class="_ _2"></span>电池<span class="_ _2"></span>的<span class="_ _2"></span>化学<span class="_ _2"></span>反<span class="_ _2"></span>应速<span class="_ _2"></span>率<span class="_ _2"></span>降低<span class="_ _2"></span>,导<span class="_ _2"></span>致<span class="_ _5"> </span><span class="ff1">SOC<span class="_"> </span></span>估算<span class="_ _2"></span>的<span class="_ _2"></span>难度<span class="_ _2"></span>增加<span class="_ _2"></span>。<span class="_ _2"></span>而在<span class="_ _5"> </span><span class="ff1">25<span class="_ _2"></span>°<span class="_ _2"></span>C</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">和<span class="_ _0"> </span><span class="ff1">45°C<span class="_"> </span></span>的高温环境下,<span class="_ _6"></span>虽然化学反应速率加快,<span class="_ _6"></span>但电池内部的热效应也可能对<span class="_ _5"> </span><span class="ff1">SOC<span class="_ _0"> </span></span>估算造</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">成影响。此外,不同的工况也会对<span class="_ _0"> </span><span class="ff1">SOC<span class="_"> </span></span>的估算带来不同的挑战。</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">#### <span class="_ _0"> </span><span class="ff2">扩展卡尔曼滤波的应用</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">在应用扩展卡<span class="_ _2"></span>尔曼滤波进行<span class="_ _5"> </span><span class="ff1">SOC<span class="_"> </span></span>估算时,我们首先<span class="_ _2"></span>需要建立电<span class="_ _2"></span>池的数学模型<span class="_ _2"></span>。这个模型<span class="_ _2"></span>应</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">当能够反映电池在不同温度和工况下的行为特性。<span class="_ _7"></span>然后,<span class="_ _7"></span>通过<span class="_ _0"> </span><span class="ff1">EKF<span class="_"> </span></span>算法对模型进行优化和调</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">整,以得到更加准确的<span class="_ _0"> </span><span class="ff1">SOC<span class="_"> </span></span>估算值。</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">#### <span class="_ _0"> </span><span class="ff2">示例代码与结果分析</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">以下是一个简单的<span class="_ _0"> </span><span class="ff1">Python<span class="_"> </span></span>代码示例,展示了如何使用扩展卡尔曼滤波进行<span class="_ _0"> </span><span class="ff1">SOC<span class="_"> </span></span>估算:</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">```python</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0"># <span class="_ _0"> </span><span class="ff2">伪代码示例:扩展卡尔曼滤波估算<span class="_ _0"> </span></span>SOC</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0"># <span class="_ _0"> </span><span class="ff2">初始化:设定电池模型参数、初始<span class="_ _0"> </span></span>SOC<span class="_"> </span><span class="ff2">估计值等</span></div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0"># ...</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0"># <span class="_ _0"> </span><span class="ff2">循环处理每个时间步的数据</span></div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">for time_step in data_set:</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>