基于DT决策树的多维自变量输入单维因变量拟合预测模型(MATLAB语言实现),基于DT决策树建立多维自变量单维因变量预测模型的MATLAB实现注释程序,基于DT决策树建立多维自变量输入单维因变量输出的
资源内容介绍
基于DT决策树的多维自变量输入单维因变量拟合预测模型(MATLAB语言实现),基于DT决策树建立多维自变量单维因变量预测模型的MATLAB实现注释程序,基于DT决策树建立多维自变量输入单维因变量输出的拟合预测模型。程序内有注释,直接替数据就可以使用。程序是MATLAB语言,基于DT决策树; 多维自变量输入; 单维因变量输出; 拟合预测模型; MATLAB程序有注释。,基于DT决策树的多维自变量与单维因变量预测模型:MATLAB程序注释版 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90427809/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90427809/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">技术博客文章<span class="ff2"> <span class="_ _0"> </span>- <span class="_ _0"> </span></span>决策树:在多维度数据预测单因变量的魔力中</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">亲爱的读者,<span class="_ _1"></span>大家好!在当今的数据驱动世界中,<span class="_ _1"></span>通过使用合适的机器学习算法进行数据分</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">析并构建模型是取得成功的一大关键。<span class="_ _1"></span>在接下来的几页中,<span class="_ _1"></span>我们将探讨如何基于决策树算法</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">建立多<span class="_ _2"></span>维自变<span class="_ _2"></span>量输入<span class="_ _2"></span>单维因<span class="_ _2"></span>变量输<span class="_ _2"></span>出的拟<span class="_ _2"></span>合预测<span class="_ _2"></span>模型。<span class="_ _2"></span>我们以<span class="_ _3"> </span><span class="ff2">MATLAB<span class="_"> </span></span>语言为例<span class="_ _2"></span>,程序<span class="_ _2"></span>内</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">附有注释,只需替换数据即可使用。</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">一、决策树概述</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">决策树是一种监督学习算法,<span class="_ _1"></span>常用于分类和回归问题。<span class="_ _1"></span>它通过构建树状结构来对数据进行分</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">类或预测。<span class="_ _4"></span>在本文中,<span class="_ _4"></span>我们将使用决策树来拟合一个模型,<span class="_ _4"></span>该模型能够根据多个自变量预测</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">一个因变量的值。</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">二、建立模型</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">在<span class="_ _5"> </span><span class="ff2">MATLAB<span class="_ _5"> </span></span>中,<span class="_ _6"></span>我们可以使用<span class="ff2">`fitrtree`</span>函数来构建决策树模型。<span class="_ _4"></span>以下是一个简单的示例代码<span class="_ _1"></span>:</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">加载或创建数据集</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">假设我们有一个包含自变量<span class="_ _5"> </span></span>X<span class="_ _5"> </span><span class="ff1">和因变量<span class="_ _5"> </span></span>Y<span class="_"> </span><span class="ff1">的数据集</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">% X<span class="_ _5"> </span><span class="ff1">为自变量矩阵,</span>Y<span class="_ _5"> </span><span class="ff1">为因变量向量</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">% X = ...; % <span class="_ _0"> </span><span class="ff1">你的数据</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">% Y = ...; % <span class="_ _0"> </span><span class="ff1">你的数据</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">使用<span class="_ _5"> </span></span>fitrtree<span class="_ _0"> </span><span class="ff1">函数构建决策树模型</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">% 'OOBPrediction'<span class="ff1">选项为<span class="_ _0"> </span></span>1<span class="_"> </span><span class="ff1">表示在树的构建过程中使用外部交叉验证进行预测性能评估</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">treeModel = fitrtree(X,Y,'OOBPrediction','On');</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">在此添加一些必要的注释以帮助其他开发人员理解代码的功能和目的</span></div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">例如:上述代码创建了一个决策树模型,用于根据自变量<span class="_ _5"> </span></span>X<span class="_ _5"> </span><span class="ff1">预测因变量<span class="_ _5"> </span></span>Y<span class="ff1">。</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">```</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">三、模型训练与评估</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">在训练决策树模型时,<span class="_ _7"></span><span class="ff2">MATLAB<span class="_ _8"></span><span class="ff1">会自动根据给定的数据集调整树的内部结构以优化预测性能。</span></span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">我们可<span class="_ _2"></span>以通过<span class="_ _2"></span>外部交<span class="_ _2"></span>叉验证<span class="_ _2"></span>来评估<span class="_ _2"></span>模型的<span class="_ _2"></span>性能。<span class="_ _2"></span>以下是<span class="_ _2"></span>如何利<span class="_ _2"></span>用<span class="_ _5"> </span><span class="ff2">MATLAB<span class="_"> </span></span>内置的<span class="_ _2"></span>交叉验<span class="_ _2"></span>证</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">功能来评估我们的模型:</div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">使用外部交叉验证评估模型性能</span></div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">[MSE, ~] = crossval(treeModel); % MSE<span class="_ _0"> </span><span class="ff1">为均方误差,是评估模型性能的常用指标之一</span></div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0">fprintf('<span class="ff1">模型的均方误差为</span>: %.4f</div><div class="t m0 x1 h2 y20 ff2 fs0 fc0 sc0 ls0 ws0">', MSE); % <span class="_ _0"> </span><span class="ff1">输出模型的均方误差</span></div><div class="t m0 x1 h2 y21 ff2 fs0 fc0 sc0 ls0 ws0">```</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>