鲸鱼优化算法(WOA)文章复现:《改进鲸鱼优化算法在机械臂时间最优轨迹规划的应用-赵晶》 策略为:Tent混沌初始化种群+非线性权重改进位置更新+非线性概率转-IWOA 复现内容包
资源内容介绍
鲸鱼优化算法(WOA)文章复现:《改进鲸鱼优化算法在机械臂时间最优轨迹规划的应用_赵晶》 策略为:Tent混沌初始化种群+非线性权重改进位置更新+非线性概率转——IWOA。 复现内容包括:改进算法实现、23个基准测试函数、文中相关因子分析、文中相关图分析、与WOA对比等。 代码基本上每一步都有注释,非常易懂,代码质量极高,便于新手学习和理解。 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90185033/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90185033/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">鲸鱼优化算法<span class="ff2">(<span class="ff3">Whale Optimization Algorithm</span>,</span>简称<span class="_ _0"> </span><span class="ff3">WOA<span class="ff2">)</span></span>是一种基于仿生学和自然进化的</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">优化算法<span class="ff2">,</span>其灵感来自于鲸鱼的觅食行为<span class="ff4">。</span>在现实生活中<span class="ff2">,</span>鲸鱼通过不断追逐猎物来获得食物<span class="ff2">,</span>并逐</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">渐形成一种优化的行为策略<span class="ff4">。<span class="ff3">WOA<span class="_ _1"> </span></span></span>算法模拟了这种行为<span class="ff2">,</span>并通过调整个体的位置来寻找最优解<span class="ff4">。</span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">在机械臂时间最优轨迹规划的应用中<span class="ff2">,</span>如何有效地找到最优的轨迹规划方案是一个非常重要的问题<span class="ff4">。</span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">赵晶在其文章<span class="ff4">《</span>改进鲸鱼优化算法在机械臂时间最优轨迹规划的应用<span class="ff4">》</span>中提出了一种改进的<span class="_ _0"> </span><span class="ff3">WOA<span class="_ _1"> </span></span>算法</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">该算法采用<span class="_ _0"> </span><span class="ff3">Tent<span class="_ _1"> </span></span>混沌初始化种群<span class="ff4">、</span>非线性权重改进位置更新和非线性概率转换的策略</span>,<span class="ff1">称为</span></div><div class="t m0 x1 h3 y7 ff3 fs0 fc0 sc0 ls0 ws0">Improved WOA<span class="ff2">(</span>IWOA<span class="ff2">)<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">本文复现了赵晶提出的改进鲸鱼优化算法的实现过程<span class="ff2">,</span>并进行了一系列的实验和分析<span class="ff4">。</span>首先<span class="ff2">,</span>本文详</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">细介绍了改进算法的实现步骤<span class="ff2">,</span>包括种群初始化<span class="ff4">、</span>位置更新和概率转换等关键步骤<span class="ff4">。</span>每一步的代码都</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">有详细的解释和注释<span class="ff2">,</span>非常易懂<span class="ff2">,</span>适合新手学习和理解<span class="ff4">。</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">接下来<span class="ff2">,</span>本文使用了<span class="_ _0"> </span><span class="ff3">23<span class="_ _1"> </span></span>个基准测试函数对改进算法进行了评估和比较<span class="ff4">。</span>这些基准函数包括了各种不</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">同的优化问题<span class="ff2">,</span>在测试过程中可以全面检验算法的性能和适应性<span class="ff4">。</span>通过与原始<span class="_ _0"> </span><span class="ff3">WOA<span class="_ _1"> </span></span>算法的对比<span class="ff2">,</span>本文</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">展示了改进算法在各个测试函数上的优势和改进效果<span class="ff4">。</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">此外<span class="ff2">,</span>在文章中<span class="ff2">,</span>本文对改进算法的相关因子进行了分析<span class="ff4">。</span>通过对位置更新<span class="ff4">、</span>权重调整和概率转换等</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">因子的变化情况进行观察和统计<span class="ff2">,</span>我们可以了解到这些因子对算法性能的影响<span class="ff2">,</span>并进一步优化算法的</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">设计和调整<span class="ff4">。</span>同时<span class="ff2">,</span>本文还通过相关图分析的方式<span class="ff2">,</span>直观地展示了算法在不同因子下的表现和优化过</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">程<span class="ff4">。</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">综上所述<span class="ff2">,</span>本文复现了赵晶提出的改进鲸鱼优化算法<span class="ff2">(<span class="ff3">IWOA</span>),</span>并进行了一系列的实验验证和分析<span class="ff4">。</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">通过对<span class="_ _0"> </span><span class="ff3">23<span class="_ _1"> </span></span>个基准测试函数的评估<span class="ff4">、</span>相关因子的分析和相关图的展示<span class="ff2">,</span>本文全面揭示了改进算法的优</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">势和效果<span class="ff4">。</span>同时<span class="ff2">,</span>本文提供的易懂的代码和详细的解释注释<span class="ff2">,</span>有助于读者更好地理解和学习改进算法</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">的实现过程和原理<span class="ff4">。</span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">正如赵晶在文章中所言<span class="ff2">,</span>改进鲸鱼优化算法在机械臂时间最优轨迹规划中具有广阔的应用前景<span class="ff4">。</span>相信</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">通过本文的复现和分析<span class="ff2">,</span>读者能够更好地理解和应用这一优化算法<span class="ff2">,</span>在实际问题中取得更好的效果<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>