基于非支配排序的多目标小龙虾优化算法求解柔性作业车间调度问题FJSP(MATLAB代码)

YexiOUqLZIP基于非支配排序的多目标小龙虾优化.zip  162.59KB

资源文件列表:

ZIP 基于非支配排序的多目标小龙虾优化.zip 大约有9个文件
  1. 1.jpg 177.95KB
  2. 基于的模糊温度控制系统仿真分析一引言.txt 2.2KB
  3. 基于非支配排序的多目标小龙虾优.txt 2.11KB
  4. 基于非支配排序的多目标小龙虾优化.txt 2.25KB
  5. 基于非支配排序的多目标小龙虾优化算.txt 2.29KB
  6. 基于非支配排序的多目标小龙虾优化算法求.doc 2.35KB
  7. 基于非支配排序的多目标小龙虾优化算法求解柔性作.html 4.13KB
  8. 基于非支配排序的多目标小龙虾优化算法求解柔性作.txt 125B
  9. 基于非支配排序的多目标小龙虾优化算法求解柔性作业.txt 2.48KB

资源介绍:

基于非支配排序的多目标小龙虾优化算法求解柔性作业车间调度问题FJSP(MATLAB代码)

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213681/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213681/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于非支配排序的多目标小龙虾优化算法求解柔性作业车间调度问题<span class="_ _0"> </span><span class="ff2">FJSP<span class="_ _1"> </span></span>的探讨</div><div class="t m0 x1 h3 y2 ff2 fs0 fc0 sc0 ls0 ws0">==============================</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">概述</div><div class="t m0 x1 h3 y4 ff2 fs0 fc0 sc0 ls0 ws0">--</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">在现代制造业中<span class="ff3">,</span>柔性作业车间调度问题<span class="ff3">(<span class="ff2">FJSP</span>)</span>一直是生产管理和调度领域的核心难题<span class="ff4">。</span>随着技术</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">的发展<span class="ff3">,</span>多目标优化算法在求解此类问题时得到了广泛应用<span class="ff4">。</span>本文将介绍一种基于非支配排序的多目</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">标小龙虾优化算法<span class="ff3">(</span>简称小龙虾算法<span class="ff3">),</span>及其在求解<span class="_ _0"> </span><span class="ff2">FJSP<span class="_ _1"> </span></span>中的应用<span class="ff4">。</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>柔性作业车间调度问题<span class="_ _0"> </span><span class="ff2">FJSP<span class="_ _1"> </span></span>简介</div><div class="t m0 x1 h3 y9 ff2 fs0 fc0 sc0 ls0 ws0">--------------------</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">柔性作业车间调度问题是一类复杂的组合优化问题<span class="ff3">,</span>涉及多个作业车间的生产调度<span class="ff4">。</span>其核心目标是实</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">现生产过程的优化<span class="ff3">,</span>包括提高生产效率<span class="ff4">、</span>降低生产成本<span class="ff4">、</span>保证交货期等<span class="ff4">。</span>由于问题的复杂性<span class="ff3">,</span>传统的</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">优化方法往往难以得到满意解<span class="ff3">,</span>因此<span class="ff3">,</span>多目标优化算法的应用成为了研究的热点<span class="ff4">。</span></div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>非支配排序算法简述</div><div class="t m0 x1 h3 ye ff2 fs0 fc0 sc0 ls0 ws0">-----------</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">非支配排序算法是一种常用于多目标优化问题的算法<span class="ff3">,</span>它通过评估解之间的支配关系<span class="ff3">,</span>将解分为不同</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">的前沿层<span class="ff3">,</span>从而找到一组均衡解<span class="ff4">。</span>该算法在多目标优化问题中表现出良好的性能<span class="ff3">,</span>尤其适用于求解复</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">杂<span class="ff4">、</span>高维度的多目标优化问题<span class="ff4">。</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、</span>小龙虾优化算法介绍</div><div class="t m0 x1 h3 y13 ff2 fs0 fc0 sc0 ls0 ws0">----------</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">小龙虾优化算法是一种新兴的启发式优化算法<span class="ff3">,</span>模拟了自然界中小龙虾的觅食行为<span class="ff4">。</span>该算法具有较强</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">的全局搜索能力和优化性能<span class="ff3">,</span>适用于求解复杂的优化问题<span class="ff4">。</span>在结合非支配排序的基础上<span class="ff3">,</span>小龙虾算法</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">能够在多目标优化问题中寻找到一组均衡解<span class="ff3">,</span>满足不同的优化目标<span class="ff4">。</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff4">、</span>基于非支配排序的小龙虾算法在<span class="_ _0"> </span><span class="ff2">FJSP<span class="_ _1"> </span></span>中的应用</div><div class="t m0 x1 h3 y18 ff2 fs0 fc0 sc0 ls0 ws0">-----------------------</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">针对<span class="_ _0"> </span><span class="ff2">FJSP<span class="_ _1"> </span></span>问题<span class="ff3">,</span>结合非支配排序的小龙虾优化算法能够通过迭代搜索<span class="ff3">,</span>找到一组均衡的生产调度方</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">案<span class="ff4">。</span>该算法首先根据<span class="_ _0"> </span><span class="ff2">FJSP<span class="_ _1"> </span></span>的问题特点<span class="ff3">,</span>构建适应度函数<span class="ff3">,</span>评估各生产方案的优劣<span class="ff4">。</span>然后<span class="ff3">,</span>通过小龙</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">虾算法的全局搜索能力<span class="ff3">,</span>寻找一组满足多个优化目标的调度方案<span class="ff4">。</span>最后<span class="ff3">,</span>利用非支配排序的思想<span class="ff3">,</span>对</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">找到的调度方案进行排序和筛选<span class="ff3">,</span>得到最终的调度结果<span class="ff4">。</span>该算法不仅能提高生产效率<span class="ff3">,</span>还能在生产成</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">本<span class="ff4">、</span>交货期等多个目标之间实现均衡<span class="ff4">。</span></div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">五<span class="ff4">、</span>实验结果与分析</div><div class="t m0 x1 h3 y1f ff2 fs0 fc0 sc0 ls0 ws0">---------</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha