板壳理论 paper 相关代码复现题目:Improved refined plate theory accounting for effect of thickness stretching in

WXqkSVXiWOHZIP板壳理论相关代码复现题目期.zip  240.89KB

资源文件列表:

ZIP 板壳理论相关代码复现题目期.zip 大约有9个文件
  1. 1.jpg 253.79KB
  2. 在科技飞速发展的今天功能梯度材料.txt 1.96KB
  3. 基于改进精化板理论的功能梯度板振动分析一引言.txt 2.16KB
  4. 好的基于您提供的主题和要求我会撰写一篇关于改进的.txt 2.24KB
  5. 文章标题基于人工势场与的无人船复杂遭遇路径规.doc 2.21KB
  6. 文章标题探究改进的精化板理论考虑功能梯度板中的厚.txt 2.23KB
  7. 板壳理论相关代码复现题目期.txt 768B
  8. 板壳理论相关代码复现题目期刊中科.html 5.81KB
  9. 由于文章中不应涉及虚假参考文献和参考资料这.txt 2.53KB

资源介绍:

板壳理论 paper 相关代码复现 题目:Improved refined plate theory accounting for effect of thickness stretching in functionally graded plates 期刊:Composites: Part B (中科院1区 top期刊 IF =13.1) 关键字:功能梯度材料矩形板;振动;计算模型 摘要:在本文中,改进了精化板理论(the refined pate theory, RPT),以解释功能梯度板中厚度拉伸的影响。 与一阶剪切变形理论相比,改进的板理论具有更少的未知数和运动方程,但无需剪切校正因子即可解释横向剪切变形效应。 通过假设厚度方向的横向位移呈抛物线变化,修正了精化板理论的位移场,从而考虑了厚度拉伸效应。 给出了简支矩形板的闭式解,并将所得结果与 3D 解以及高阶剪切变形理论预测的结果进行了比较。 验证研究表明,该理论不仅比精化板理论更准确,而且与包含更多未知数的高阶剪切变形理论相当。

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213595/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213595/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">文章标题<span class="ff2">:</span>基于人工势场与<span class="_ _0"> </span><span class="ff3">MPC<span class="_ _1"> </span></span>的无人船复杂遭遇路径规划研究</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff2">:</span>船舶运动规划是海上自主水面舰艇<span class="ff2">(<span class="ff3">MASS</span>)</span>自主导航的核心问题之一<span class="ff4">。</span>本文主要针对复杂遭遇</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">场景下的无人船路径规划进行研究<span class="ff2">,</span>提出了一种新颖的模型预测人工势场<span class="ff2">(<span class="ff3">MPAPF</span>)</span>运动规划方法<span class="ff4">。</span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">该方法结合了人工势场和模型预测控制<span class="ff2">(<span class="ff3">MPC</span>)</span>的优势<span class="ff2">,</span>旨在解决传统人工势场方法在复杂遭遇场景</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">下的局部最优问题<span class="ff2">,</span>确保船舶的避碰安全<span class="ff4">。</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>引言</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">随着无人船技术的迅速发展<span class="ff2">,</span>船舶运动规划在自主导航中扮演着至关重要的角色<span class="ff4">。</span>特别是在复杂遭遇</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">场景中<span class="ff2">,</span>如何确保无人船的安全航行成为了一个亟待解决的问题<span class="ff4">。</span>本文旨在解决这一问题<span class="ff2">,</span>提出了一</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">种基于人工势场与<span class="_ _0"> </span><span class="ff3">MPC<span class="_ _1"> </span></span>的无人船路径规划方法<span class="ff4">。</span></div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>相关工作</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">在传统的人工势场方法中<span class="ff2">,</span>通过将障碍物和目标物视为产生势场的物体<span class="ff2">,</span>从而引导船舶沿着合适的路</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">径航行<span class="ff4">。</span>然而<span class="ff2">,</span>在复杂遭遇场景中<span class="ff2">,</span>传统的人工势场方法容易陷入局部最优解<span class="ff2">,</span>导致船舶的避碰安全</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">无法得到保障<span class="ff4">。</span>为了解决这个问题<span class="ff2">,</span>本文结合了<span class="_ _0"> </span><span class="ff3">MPC<span class="_ _1"> </span></span>的优势<span class="ff2">,</span>提出了一种新型的模型预测人工势场<span class="ff2">(</span></div><div class="t m0 x1 h2 ye ff3 fs0 fc0 sc0 ls0 ws0">MPAPF<span class="ff2">)<span class="ff1">方法<span class="ff4">。</span></span></span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、</span>方法</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">本文首先建立了新的船舶域<span class="ff2">,</span>并设计了闭区间势场函数来表示船舶域的不可侵犯性质<span class="ff4">。</span>在此基础上<span class="ff2">,</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">采用具有预定义速度的<span class="_ _0"> </span><span class="ff3">Nomoto<span class="_ _1"> </span></span>模型生成符合船舶运动学的可跟随路径<span class="ff4">。</span>为了解决传统人工势场的局</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">部最优问题<span class="ff2">,</span>我们提出了一种基于模型预测策略和人工势场的运动规划方法<span class="ff2">,</span>即<span class="_ _0"> </span><span class="ff3">MPAPF<span class="ff4">。</span></span>该方法通过</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">预测未来的船舶运动状态<span class="ff2">,</span>结合人工势场的思想<span class="ff2">,</span>对路径进行实时优化和调整<span class="ff2">,</span>从而确保船舶在复杂</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">遭遇场景下的避碰安全<span class="ff4">。</span></div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff4">、</span>实验与结果</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">为了验证<span class="_ _0"> </span><span class="ff3">MPAPF<span class="_ _1"> </span></span>方法的有效性<span class="ff2">,</span>我们在<span class="_ _0"> </span><span class="ff3">MATLAB<span class="_ _1"> </span></span>平台上进行了实验<span class="ff4">。</span>实验结果表明<span class="ff2">,</span>与传统的人工</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">势场方法相比<span class="ff2">,<span class="ff3">MPAPF<span class="_ _1"> </span></span></span>方法能够更好地处理复杂遭遇场景下的路径规划问题<span class="ff2">,</span>确保了船舶的避碰安全</div><div class="t m0 x1 h2 y18 ff4 fs0 fc0 sc0 ls0 ws0">。<span class="ff1">此外<span class="ff2">,</span>我们还提供了<span class="_ _0"> </span><span class="ff3">MATLAB<span class="_ _1"> </span></span>源码和相关文献<span class="ff2">,</span>以便读者进一步研究和验证</span>。</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">五<span class="ff4">、</span>讨论与分析</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">本文提出的<span class="_ _0"> </span><span class="ff3">MPAPF<span class="_ _1"> </span></span>方法结合了人工势场和<span class="_ _0"> </span><span class="ff3">MPC<span class="_ _1"> </span></span>的优势<span class="ff2">,</span>能够实时优化和调整路径<span class="ff2">,</span>确保船舶在复杂</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">遭遇场景下的避碰安全<span class="ff4">。</span>然而<span class="ff2">,</span>该方法仍然存在一些局限性<span class="ff2">,</span>如计算复杂度较高<span class="ff4">。</span>未来的研究将集中</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">在如何降低计算复杂度<span class="ff4">、</span>提高路径规划效率等方面<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha