基于粒子群算法与人工蜂群算法的多目标无功优化方案(针对标准节点系统的实现与比较),基于粒子群算法与人工蜂群算法的多目标无功优化方案(针对标准节点系统的实现与比较),多目标无功优化(方案一)matlab
资源内容介绍
基于粒子群算法与人工蜂群算法的多目标无功优化方案(针对标准节点系统的实现与比较),基于粒子群算法与人工蜂群算法的多目标无功优化方案(针对标准节点系统的实现与比较),多目标无功优化(方案一)matlab 粒子群算法(PSO)&&人工蜂群算法(ABC) 使用人工蜂群算法,改进的人工蜂群算法以及改进的粒子群算法对标准节点系统(14 30节点)实现无功优化并比较结果。以网损+电压偏差罚函数+无功偏差罚函数作为多目标函数,将发电机电压 变压器变化 电容器电容作为变量并进行相应的离散化处理,实现很好的优化效果,关键词:1. 多目标无功优化;2. MATLAB;3. 粒子群算法(PSO);4. 人工蜂群算法(ABC);5. 改进的粒子群算法;6. 改进的蜂群算法;7. 标准节点系统(14-30节点);8. 网损;9. 电压偏差罚函数;10. 无功偏差罚函数;11. 优化效果。,基于改进算法的多目标无功优化:PSO与ABC算法在14-30节点系统的比较研究 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90434114/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90434114/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于粒子群算法与人工蜂群算法的多目标无功优化策略分析</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一、引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着电力系统规模的不断扩大,<span class="_ _0"></span>如何进行有效的无功优化,<span class="_ _0"></span>已经成为电网优化管理的核心任</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">务。<span class="_ _1"></span>为了更好地提升系统效率,<span class="_ _1"></span>本篇将研究基于<span class="_ _2"> </span><span class="ff2">matlab<span class="_ _2"> </span></span>编程语言使用粒子群算法<span class="ff2">(PSO)</span>以及</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">人工蜂群算法<span class="ff2">(ABC)</span>实现<span class="_ _2"> </span><span class="ff2">14-30<span class="_"> </span></span>节点系统的无功优化。同时,我们将对这两种算法进行改进,</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">并比较其优化效果。</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">二、算法介绍</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">1. <span class="_ _3"> </span><span class="ff1">粒子群算法</span>(PSO)<span class="ff1">:<span class="_ _4"></span>粒子群算法是一种基于群体智能的优化算法,它通过模拟粒子的移动</span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">和变化来寻找最优解。</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">2. <span class="_ _3"> </span><span class="ff1">人工蜂群算法</span>(ABC)<span class="ff1">:<span class="_ _4"></span>人工蜂群算法是模仿蜜蜂觅食行为的优化算法,它通过模拟蜜蜂的</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">搜索、采集和交流过程来寻找最优解。</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">三、无功优化模型</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">我们以网损、<span class="_ _1"></span>电压偏差罚函数以及无功偏差罚函数作为多目标函数,<span class="_ _1"></span>以发电机电压、<span class="_ _5"></span>变压器</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">变化和电容器电容作为变量。<span class="_ _6"></span>为了更好地适应算法的求解,<span class="_ _6"></span>我们将这些变量进行离散化处理。</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">四、多目标无功优化策略</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">1. <span class="_ _3"> </span><span class="ff1">使用原始的人工蜂群算法对标准节点系统进行无功优化。</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">2. <span class="_ _3"> </span><span class="ff1">改进的人工蜂群算法:针对原始<span class="_ _3"> </span></span>ABC<span class="_"> </span><span class="ff1">算法的不足,我们进行相应的改进,如引入自适应</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">搜索策略等,以提升其优化效果。</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">3. <span class="_ _3"> </span><span class="ff1">改进的粒子群算法:在<span class="_ _3"> </span></span>PSO<span class="_"> </span><span class="ff1">的基础上,我们引入了更多的智能搜索策略和适应性调整机</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">制,以提升其寻优能力。</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">五、实验与结果分析</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">我<span class="_ _7"></span>们分<span class="_ _7"></span>别<span class="_ _7"></span>使<span class="_ _7"></span>用<span class="_ _7"></span>原<span class="_ _7"></span>始<span class="_ _7"></span>和<span class="_ _7"></span>改<span class="_ _7"></span>进<span class="_ _7"></span>的<span class="_ _8"> </span><span class="ff2">PSO<span class="_"> </span></span>和<span class="_ _2"> </span><span class="ff2">ABC<span class="_"> </span></span>算<span class="_ _7"></span>法<span class="_ _7"></span>对<span class="_ _8"> </span><span class="ff2">14-30<span class="_"> </span></span>节点<span class="_ _7"></span>系<span class="_ _7"></span>统<span class="_ _7"></span>进<span class="_ _7"></span>行<span class="_ _7"></span>无<span class="_ _7"></span>功<span class="_ _7"></span>优<span class="_ _7"></span>化<span class="_ _7"></span>。<span class="_ _7"></span>结<span class="_ _7"></span>果<span class="_ _7"></span>如<span class="_ _7"></span>下<span class="_ _7"></span>:</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">1. <span class="_ _3"> </span><span class="ff1">原始<span class="_ _2"> </span></span>ABC<span class="_ _3"> </span><span class="ff1">和<span class="_ _2"> </span></span>PSO<span class="_"> </span><span class="ff1">算法在无功优化中均能取得一定的效果,但优化效果相对有限。</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">2. <span class="_ _3"> </span><span class="ff1">改进的<span class="_ _2"> </span></span>ABC<span class="_ _3"> </span><span class="ff1">和<span class="_ _2"> </span></span>PSO<span class="_"> </span><span class="ff1">算法在无功优化中取得了更好的效果,<span class="_ _1"></span>尤其是在网损、<span class="_ _1"></span>电压偏差和无</span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">功偏差等方面有明显的改善。</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">3. <span class="_"> </span><span class="ff1">对比<span class="_ _7"></span>两<span class="_ _7"></span>种<span class="_ _7"></span>改<span class="_ _7"></span>进<span class="_ _7"></span>算<span class="_ _7"></span>法<span class="_ _7"></span>,<span class="_ _9"></span>改<span class="_ _7"></span>进<span class="_ _7"></span>的<span class="_ _8"> </span></span>PSO<span class="_"> </span><span class="ff1">算法<span class="_ _7"></span>在<span class="_ _7"></span>大<span class="_ _7"></span>多<span class="_ _9"></span>数<span class="_ _7"></span>情<span class="_ _7"></span>况<span class="_ _7"></span>下<span class="_ _7"></span>表<span class="_ _7"></span>现<span class="_ _7"></span>更<span class="_ _7"></span>优<span class="_ _7"></span>,<span class="_ _7"></span>但<span class="_ _9"></span>在<span class="_ _7"></span>某<span class="_ _7"></span>些<span class="_ _7"></span>特<span class="_ _7"></span>定<span class="_ _7"></span>情<span class="_ _7"></span>况<span class="_ _7"></span>下<span class="_ _7"></span>,</span></div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">改进的<span class="_ _2"> </span><span class="ff2">ABC<span class="_ _3"> </span></span>算法也能取得较好的效果。</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">六、结论</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">本篇通过使用<span class="_ _2"> </span><span class="ff2">matlab<span class="_"> </span></span>编程语言,利用粒子群算法和<span class="_ _7"></span>人工蜂群算法对标准<span class="_ _7"></span>节点系统进行无功</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">优化,<span class="_ _a"></span>并比较了原始和改进的两种算法的优化效果。<span class="_ _a"></span>实验结果表明,<span class="_ _a"></span>改进的<span class="_ _2"> </span><span class="ff2">PSO<span class="_"> </span></span>和<span class="_ _3"> </span><span class="ff2">ABC<span class="_ _2"> </span></span>算</div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0">法在无功<span class="_ _7"></span>优化中均<span class="_ _7"></span>取得了较<span class="_ _7"></span>好的效果<span class="_ _7"></span>,其中改<span class="_ _7"></span>进的<span class="_ _2"> </span><span class="ff2">PSO<span class="_"> </span></span>算法在大多<span class="_ _7"></span>数情况下<span class="_ _7"></span>表现更<span class="_ _7"></span>优。这</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>