基于自适应遗忘因子递推最小二乘法与扩展卡尔曼滤波算法的锂电池参数及SOC联合估计(Matlab程序实现),一阶RC模型自适应遗忘因子递推最小二乘法结合扩展卡尔曼滤波算法进行锂电池参数与SOC联合估计(

UkKnVrxlDZIP一阶模型自适应遗忘因子递推最小  1.84MB

资源文件列表:

ZIP 一阶模型自适应遗忘因子递推最小 大约有11个文件
  1. 1.jpg 437.59KB
  2. 一阶模型与自适应遗忘因子递推最小二乘法联合估.html 613.3KB
  3. 一阶模型自适应遗忘因.html 613.06KB
  4. 一阶模型自适应遗忘因子.html 612.43KB
  5. 一阶模型自适应遗忘因子递推最小二.docx 22.27KB
  6. 一阶模型自适应遗忘因子递推最小二乘法扩展卡尔.docx 14.99KB
  7. 一阶模型自适应遗忘因子递推最小二乘法扩展卡尔曼.docx 45.45KB
  8. 一阶模型锂电池参数和联合估计中的.docx 45.95KB
  9. 一阶模型锂电池参数和联合估计技术分析.docx 45.99KB
  10. 一阶模型锂电池参数和联合估计技术博客文章一引.docx 45.61KB
  11. 一阶模型锂电池参数和联合估计的技术博客文.docx 45.64KB

资源介绍:

基于自适应遗忘因子递推最小二乘法与扩展卡尔曼滤波算法的锂电池参数及SOC联合估计(Matlab程序实现),一阶RC模型自适应遗忘因子递推最小二乘法结合扩展卡尔曼滤波算法进行锂电池参数与SOC联合估计(matlab程序实现),一阶RC模型自适应遗忘因子递推最小二乘法+扩展卡尔曼滤波算法AFFRLS+EKF锂电池参数和SOC联合估计 遗忘因子可随时间自适应变化,不再是定值,提高估计精度 matlab程序 参考文献 ,一阶RC模型; 自适应遗忘因子; 递推最小二乘法; 扩展卡尔曼滤波算法(AFFRLS+EKF); 锂电池参数和SOC联合估计; Matlab程序。,基于自适应遗忘因子的AFFRLS-EKF算法:锂电池参数与SOC联合高精度估计的Matlab实现

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90431013/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90431013/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">一阶<span class="_ _0"> </span></span>RC<span class="_ _0"> </span><span class="ff2">模型与自适应遗忘因子递推最小二乘法联合估计锂电池<span class="_ _0"> </span></span>SOC**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">摘要<span class="_ _1"></span>:本<span class="_ _1"></span>文将<span class="_ _1"></span>探讨<span class="_ _1"></span>一阶<span class="_ _2"> </span><span class="ff1">RC<span class="_"> </span></span>模型在<span class="_ _1"></span>锂电<span class="_ _1"></span>池参<span class="_ _1"></span>数和<span class="_ _2"> </span><span class="ff1">SOC<span class="_"> </span></span>联合估<span class="_ _1"></span>计中<span class="_ _1"></span>的应<span class="_ _1"></span>用,<span class="_ _1"></span>重点<span class="_ _1"></span>介绍<span class="_ _1"></span>自适<span class="_ _1"></span>应</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">遗忘因子递推最小二乘法<span class="_ _3"></span>(<span class="ff1">AFFRLS</span>)<span class="_ _3"></span>的原理及其在扩展卡尔曼滤波算法<span class="_ _3"></span>(<span class="ff1">EKF</span>)<span class="_ _3"></span>中的结合使</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">用。通过仿真实验,我们验证<span class="_ _1"></span>了该算法在提高估计精度方面<span class="_ _1"></span>的有效性,并提供了<span class="_ _0"> </span><span class="ff1">Matlab<span class="_"> </span></span>程</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">序示例。</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">一、引言</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">随着电<span class="_ _1"></span>动汽<span class="_ _1"></span>车的<span class="_ _1"></span>普及,<span class="_ _1"></span>锂电<span class="_ _1"></span>池的<span class="_ _2"> </span><span class="ff1">SOC</span>(荷<span class="_ _1"></span>电状<span class="_ _1"></span>态)<span class="_ _1"></span>估计成<span class="_ _1"></span>为了<span class="_ _1"></span>电池<span class="_ _1"></span>管理系<span class="_ _1"></span>统的<span class="_ _1"></span>关键<span class="_ _1"></span>技术之</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">一。<span class="_ _4"></span>一阶<span class="_ _0"> </span><span class="ff1">RC<span class="_ _0"> </span></span>模型因其简单性和有效性被广泛应用于锂电池的建模中。<span class="_ _4"></span>而递推最小二乘法作</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">为参数估计的一种有效方法,其结合自适应遗忘因子能够进一步提高估计精度。</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">二、一阶<span class="_ _0"> </span><span class="ff1">RC<span class="_ _0"> </span></span>模型</div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">一阶<span class="_ _0"> </span><span class="ff1">RC<span class="_ _0"> </span></span>模型是一种用于描述锂电池动态行为的电化学模型。<span class="_ _4"></span>它包括电池的欧姆内阻、<span class="_ _4"></span>极化</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">内阻和电容等元素,<span class="_ _5"></span>能够较好地反映电池的充放电过程。<span class="_ _5"></span>在这个模型基础上,<span class="_ _5"></span>我们可以对电</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">池的电压和电流进行建模,为后续的参数估计和<span class="_ _0"> </span><span class="ff1">SOC<span class="_"> </span></span>估计提供基础。</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">三、自适应遗忘因子递推最小二乘法(<span class="ff1">AFFRLS</span>)</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">递推最小二乘法是一种在线参数估计方法,<span class="_ _6"></span>能够实时更新模型的参数。<span class="_ _6"></span>而自适应遗忘因子则</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">可以根据时间的变化,<span class="_ _7"></span>动态地调整参数更新的权重。<span class="_ _7"></span>这样,<span class="_ _7"></span>当新的数据到来时,<span class="_ _7"></span>算法能够自</div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">动地赋予新数据更大的权重,从而更好地适应系统状态的变化。</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">四、<span class="ff1">AFFRLS<span class="_ _0"> </span></span>与<span class="_ _0"> </span><span class="ff1">EKF<span class="_ _0"> </span></span>的结合使用</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">扩展卡尔曼滤波算法<span class="_ _5"></span>(<span class="ff1">EKF</span>)<span class="_ _7"></span>是一种常用的非线性系统状态估计方法。<span class="_ _5"></span>我们将<span class="_ _0"> </span><span class="ff1">AFFRLS<span class="_"> </span></span>与<span class="_ _0"> </span><span class="ff1">EKF</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">结合,<span class="_ _3"></span>利用<span class="_ _0"> </span><span class="ff1">AFFRLS<span class="_ _0"> </span></span>对锂电池的参数进行实时估计,<span class="_ _4"></span>并将估计结果作为<span class="_ _0"> </span><span class="ff1">EKF<span class="_"> </span></span>的输入,<span class="_ _3"></span>进一步</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">提高<span class="_ _0"> </span><span class="ff1">SOC<span class="_"> </span></span>的估计精度。</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">五、<span class="ff1">Matlab<span class="_ _0"> </span></span>程序示例</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">下面是一个简<span class="_ _1"></span>单的<span class="_ _0"> </span><span class="ff1">Matlab<span class="_"> </span></span>程序示例,展示了<span class="_ _1"></span>如何实现<span class="_ _0"> </span><span class="ff1">AFFRLS<span class="_"> </span></span>算法并结合<span class="_ _0"> </span><span class="ff1">EKF<span class="_"> </span></span>进行锂电池</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">SOC<span class="_"> </span><span class="ff2">的估计。<span class="_ _1"></span>请注<span class="_ _1"></span>意,<span class="_ _1"></span>这只是<span class="_ _1"></span>一个<span class="_ _1"></span>示例程<span class="_ _1"></span>序,<span class="_ _1"></span>实际<span class="_ _1"></span>的应用<span class="_ _1"></span>可能<span class="_ _1"></span>需要<span class="_ _1"></span>根据具<span class="_ _1"></span>体的<span class="_ _1"></span>系统<span class="_ _1"></span>环境和</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">需求进行适当的调整。</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">% <span class="_ _8"> </span><span class="ff2">假设已经有了电池的一阶<span class="_ _0"> </span></span>RC<span class="_ _0"> </span><span class="ff2">模型和相应的数据</span></div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">% <span class="_ _8"> </span><span class="ff2">初始化参数和变量</span></div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">% ...</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">% <span class="_ _8"> </span><span class="ff2">使用<span class="_ _0"> </span></span>AFFRLS<span class="_ _0"> </span><span class="ff2">算法对参数进行估计</span></div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0">% ...</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>
100+评论
captcha