全局搜索策略的鲸鱼优化算法GSWOA助力SVM参数c和g优化,构建多维输入单维输出预测模型,基于全局搜索策略的鲸鱼优化算法GSWOA的SVM参数c和g寻优建立预测模型,一种全局搜索策略的鲸鱼优化算法G

odvgacBZfKNZIP一种全局搜索策略的鲸鱼优化算法对的参数和  4.96MB

资源文件列表:

ZIP 一种全局搜索策略的鲸鱼优化算法对的参数和 大约有13个文件
  1. 1.jpg 700.59KB
  2. 2.jpg 128.43KB
  3. 3.jpg 263.09KB
  4. 一种全局搜索策略的鲸鱼优化算法对.html 1.45MB
  5. 一种全局搜索策略的鲸鱼优化算法对支持向量机的.docx 45.92KB
  6. 全局搜索策略的鲸鱼优化算法是一种.docx 22.39KB
  7. 基于全局搜索策略的鲸鱼优化算.html 1.45MB
  8. 探索鲸鱼优化算法在参数寻优中的应用一引言在机.docx 47.08KB
  9. 标题基于全局搜索策略的鲸鱼优化算法在参数优化.docx 16.12KB
  10. 鲸鱼优化算法在参.html 1.45MB
  11. 鲸鱼优化算法在参数寻.html 1.45MB
  12. 鲸鱼优化算法在参数寻优中的应用与技术分析一引言.docx 47.08KB
  13. 鲸鱼优化算法在机器学习中的技术应用与.docx 45.75KB

资源介绍:

全局搜索策略的鲸鱼优化算法GSWOA助力SVM参数c和g优化,构建多维输入单维输出预测模型,基于全局搜索策略的鲸鱼优化算法GSWOA的SVM参数c和g寻优建立预测模型,一种全局搜索策略的鲸鱼优化算法GSWOA对SVM的参数c和g做寻优,优化两个最佳参数,然后建立多维输入单维输出的预测模型,具体预测效果如下图所示,代码内有注释,直接替数据就可以使用。 ,全局搜索策略; 鲸鱼优化算法GSWOA; SVM参数寻优; 参数c和g; 最佳参数优化; 多维输入单维输出预测模型; 代码注释替换。,全局搜索策略GSWOA优化SVM参数c和g,高效预测模型构建与效果展示

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90430923/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90430923/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">探索鲸鱼优化算法<span class="_ _0"> </span><span class="ff2">GSWOA<span class="_ _0"> </span></span>在<span class="_ _0"> </span><span class="ff2">SVM<span class="_"> </span></span>参数寻优中的应用</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">======================</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">一、引言</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">----</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">在机器学习的领域中,<span class="_ _1"></span>支持向量机<span class="_ _1"></span>(<span class="ff2">SVM</span>)<span class="_ _1"></span>是一种广泛应用的分类和回归分析工具。<span class="_ _1"></span>其性能</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">在很大程度上依赖于两个关键参数<span class="_ _1"></span>:<span class="_ _1"></span>惩罚系数<span class="_ _0"> </span><span class="ff2">c<span class="_ _0"> </span></span>和核函数参数<span class="_ _0"> </span><span class="ff2">g</span>。如何有效地寻找这两个参</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">数<span class="_ _2"></span>的<span class="_ _2"></span>最<span class="_ _2"></span>佳<span class="_ _2"></span>值<span class="_ _2"></span>,<span class="_ _2"></span>一<span class="_ _2"></span>直<span class="_ _2"></span>是<span class="_ _2"></span>研<span class="_ _2"></span>究<span class="_ _2"></span>的<span class="_ _2"></span>热<span class="_ _2"></span>点<span class="_ _2"></span>。<span class="_ _2"></span>本<span class="_ _2"></span>文<span class="_ _2"></span>将<span class="_ _2"></span>介<span class="_ _2"></span>绍<span class="_ _2"></span>一<span class="_ _2"></span>种<span class="_ _2"></span>全<span class="_ _2"></span>局<span class="_ _2"></span>搜<span class="_ _2"></span>索<span class="_ _2"></span>策<span class="_ _2"></span>略<span class="_ _2"></span><span class="ff2">——</span>鲸<span class="_ _2"></span>鱼<span class="_ _2"></span>优<span class="_ _2"></span>化<span class="_ _2"></span>算<span class="_ _2"></span>法</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">(<span class="ff2">GSWOA</span>)<span class="_ _3"></span>,并探讨其如何对<span class="_ _0"> </span><span class="ff2">SVM<span class="_"> </span></span>的<span class="_ _0"> </span><span class="ff2">c<span class="_ _0"> </span></span>和<span class="_ _0"> </span><span class="ff2">g<span class="_ _0"> </span></span>参数进行寻优,并建立多维输入单维输出的预</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">测模型。</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">二、鲸鱼优化算法(<span class="ff2">GSWOA</span>)简介</div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">------------</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">鲸鱼优化算法是一种新型的全局优化算法,<span class="_ _4"></span>其灵感来源于鲸鱼的游动行为。<span class="_ _4"></span>通过模拟鲸鱼的</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">社会行为和游动规律,<span class="_ _1"></span><span class="ff2">GSWOA<span class="_"> </span><span class="ff1">能够在搜索空间中高效地寻找全局最优解。<span class="_ _1"></span>这种算法的特点</span></span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">是能够处理复杂的非线性问题,并且在搜索过程中具有较强的鲁棒性。</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">三、<span class="ff2">GSWOA<span class="_ _0"> </span></span>在<span class="_ _0"> </span><span class="ff2">SVM<span class="_"> </span></span>参数寻优中的应用</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">--------------</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">在<span class="_ _0"> </span><span class="ff2">SVM<span class="_"> </span></span>的参数寻优过程中,我们利用<span class="_ _0"> </span><span class="ff2">GSWOA<span class="_ _0"> </span></span>的全局搜索能力,对<span class="_ _0"> </span><span class="ff2">c<span class="_"> </span></span>和<span class="_ _0"> </span><span class="ff2">g<span class="_ _0"> </span></span>两个参数进行寻</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">优。通过<span class="_ _0"> </span><span class="ff2">GSWOA<span class="_"> </span></span>的迭代计算,我们可以找到使<span class="_ _0"> </span><span class="ff2">SVM<span class="_ _0"> </span></span>模型预测效果最佳的最佳<span class="_ _0"> </span><span class="ff2">c<span class="_"> </span></span>和<span class="_ _0"> </span><span class="ff2">g<span class="_ _0"> </span></span>值。</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">这一过程不仅提高了<span class="_ _0"> </span><span class="ff2">SVM<span class="_"> </span></span>的性能,还使得模型更加适应具体的应用场景。</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>
100+评论
captcha